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Abstract 1. Introduction 
A stochastic interest rate generator is a valuable 

actuarial tool. The parameters that specify a stochastic 
model of interest rates can be adjusted to make the 
model arbitrage-free, or they can be adjusted to accom- 
modate an individual investor's subjective views. The 
arbitrage-free settings of the parameters must be used 
when pricing streams of interest-rate-contingent cash 
flows, for example, when establishing the risk-neutral 
position for asset-liability management. The real-world 
settings of the parameters should be used when evaluat- 
ing the risk-reward tradeoffs inherent in deviating from 
the risk-neutral position. 

Without relying on formulas, this paper presents the 
important concepts underlying the theory of arbitrage- 
free pricing of interest-rate-contingent cash flows: 
absence of opportunities for riskless arbitrage; com- 
pleteness of markets; relative prices that do not depend 
on individual investors' subjective views or risk prefer- 
ences; and expected-value pricing in the risk-neutral 
world. Using these concepts, the paper then describes 
the steps required to build continuous stochastic models 
of interest rates, including models that are either par- 
tially or fully arbitrage free. After studying the paper, 
all actuaries should be able to comprehend better some 
of the literature in this important subject area. Then, 
after studying some of the technical references, many 
actuaries should be in a position to begin to build their 
own practical models. 

In recent years, the literature of financial economics 
has featured papers on how to value interest-rate-con- 
tingent claims by means of option-pricing models (for 
example, [2], [8], [11], [14], and [18]). The most impor- 
tant applications include the pricing of fixed-income 
instruments with embedded options: callable corporate 
bonds, mortgage-backed securities subject to prepay- 
ment risk, collateralized mortgage obligations (CMOs) 
created by allocating the cash flows arising from pools 
of mortgages to different classes of bonds, floating-rate 
and other indexed bonds, and various hedging instru- 
ments, such as futures, options, and interest rate swaps, 
caps, and floors. Life insurers have begun to use option- 
pricing models to value complicated interest-rate-con- 
tingent liabilities that contain embedded options, such 
as the insurer's right to reset periodically the interest 
rate credited to a policyholder's account, or the policy- 
holder's right to take loans at below-market interest 
rates or to surrender a policy for a cash amount that 
does not fully take into account the level of interest 
rates prevailing at the time of surrender. In the U.S., the 
capital adequacy of depository institutions (banks and 
thrifts) is now measured against risk-based capital 
guidelines that include an interest rate risk component, 
for which an option-pricing model is needed to value 
mortgage-related assets properly. 
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Unfortunately, the papers about option pricing are 
often very technical, leaving almost all actuaries frus- 
trated, because they recognize the importance of utilizing 
option-based models, but they do not understand the the- 
ory well enough to be able to write computer programs to 
implement it. I have made no attempt in this paper to 
review the literature on the subjects of interest rate mod- 
els and option pricing. That would have diluted my 
efforts in achieving the paper's objective of bringing the 
actuary who is not an expert in either financial economics 
or in the mathematics of stochastic processes (martin- 
gales and stochastic calculus, in particular) comfortably 
to the point of understanding how a useful model for val- 
uing streams of interest-rate-contingent cash flows can be 
built. Several routes could have been followed to achieve 
this objective. After much consideration, I decided to 
develop the paper without formulas, with one exception: 
in offering an example of a continuous stochastic process 
for interest rates, it seemed easier to write down a few 
equations than to write elaborately around them. After 
reading this paper, and perhaps relying to some extent on 
the references cited, mathematically inclined actuaries 
will likely be able to construct stochastic interest rate 
generators appropriate to their needs. Other actuaries, if 
unable to build such generators themselves, should at 
least be able to apply the generators in solving asset and 
liability valuation problems. The principal goal of this 
paper is to discuss thoroughly the concepts underlying 
the valuation of interest-rate-contingent streams of cash 
flows, not to provide a set of mathematical recipes that 
can be programmed into an option-pricing model on a 
computer. 

Central to the problem of valuing interest-rate-con- 
tingent cash flows is the creation of an appropriate set 
of interest rate paths or scenarios. In fact, once a theo- 
retically sound stochastic interest rate generator has 
been constructed, all the applications described above 
can be handled. Each application involves projecting 
the relevant cash flows along a path, then discounting 
the projected cash flows for the path, using the short- 
term interest rates along the path, to a present value 
number for the path, and finally averaging the present 
value numbers for all paths to obtain the arbitrage-free 
value of the cash-flow stream. The rigorous proof that 
such a simple procedure works is highly mathematical 
(see, for example, the texts [12] and [16]). However, 
one can develop an intuitive feel for the validity of the 
approach without having to face intimidating mathe- 
matics. In this paper, I offer some explanation that 
serves to build such intuition, but not so much as to dis- 

tract us from the main goal of laying the foundation for 
constructing arbitrage-free stochastic interest rate gen- 
erators. 

Section 2 introduces the concepts of current-coupon 
yields, spot rates of interest, and forward rates of inter- 
est, and describes the relationships among them. Sec- 
tion 3 briefly describes both discrete-state and 
continuous-state models of interest rates and debates 
the strengths and weaknesses of each. Section 4 intro- 
duces several key concepts from financial economics, 
and then indicates how the assumptions of complete 
markets and the lack of riskless arbitrage opportunities 
allow one to move into a special equilibrium world 
characterized as risk neutral, in which the valuation of 
interest-rate-contingent cash flows becomes a straight- 
forward expected-value problem. Section 5 fulfills the 
purpose of the paper by documenting how to construct a 
path generator based on a continuous process, and Sec- 
tion 6 then indicates how such a generator can be used. 
Section 7 lists the key conclusions of the paper. 

2. Yield Curve and Term Structure 
This paper focuses on interest rates for instruments 

free from default and call risk, which, in the financial 
markets in the U.S., means U.S. Treasury bills, notes, 
and bonds. All other investment-grade fixed-income 
financial assets are priced relative to U.S. Treasury obli- 
gations. There are several equivalent ways to express 
the set of yields applying to risk-free debt obligations of 
various maturities. The most common, because it is the 
basis on which traders make quotations, is the concept 
of the yield curve. The yield curve is a graph that 
depicts the yields of hypothetical U.S. Treasury obliga- 
tions that trade at a price of par as a function of their 
terms to maturity in years. By convention, the yields on 
such par bonds are expressed as annual rates of interest 
payable semiannually, referred to as bond-equivalent 
yields, because bonds issued in the U.S. usually pay 
coupons semiannually. The hypothetical bonds trading 
at a price of par that constitute the yield curve are said 
to have current coupons. 

Another way to express the information contained in 
the yield curve is to compute the yields of zero-coupon 
bonds of various maturities from the yields of all cur- 
rent-coupon bonds. A unit par value zero-coupon bond 
having a maturity of n years pays its holder $1 at the 
end of n years and nothing before then. A zero-coupon 
bond is sometimes referred to as a pure discount bond, 
because it must always trade at a price less than par, that 
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is, at a discount to par. The yield of a zero-coupon bond 
with maturity n years is referred to as the n-year spot 
yield or spot rate. The graph that depicts default-free 
spot rates as a function of term to maturity is known as 
the term structure of interest rates. The prices of the 
zero-coupon bonds that define the term structure are 
often referred to as spot prices and, as already stated, 
are always less than par. 

Yet a third way to express the information contained 
in either the yield curve or the term structure is to com- 
pute the yields for forward loans. For example, an inves- 
tor might agree to lend a borrower money in m years and 
to be repaid in full (principal plus all accumulated inter- 
est) in n years from that point in time---that is, at the end 
of m + n years from today. Such an arrangement is 
known as an m-year forward n-year loan. The rate of 
interest for such a loan is referred to as the (m,n) year for- 
ward rate. More generally, the (m,n;t) year forward rate 
refers to the interest rate on a loan that will be arranged t 
years from today, under which an investor will lend a 
borrower money m + t years from today and will be 
repaid in full m + n + t years from today. 

Using the terms defined above, it can be shown that 
the n-year spot price is equal to the product of n positive 
discount factors. The first factor involves only the (0,1) 
year forward rate; the second factor involves only the 
(1,1) year forward rate; and the n-th factor involves only 
the (n - 1,1) year forward rate. Thus, it follows that the 
(n + 1)-year spot price divided by the n-year spot price is 
equal to a positive number that depends only on the (n,1) 
year forward rate. This number will be less than or equal 
to 1 (in other words, it will be a "discount" factor) if, and 
only if, the (n, 1) year forward rate is non-negative. 

The information contained in the sets of current-cou- 
pon yields, spot rates, and forward rates is equivalent. 
(Further material on this subject can be found in the text 
by Sharpe and Alexander [22].) Any one set of yields or 
rates is sufficient to derive the other two sets. Depending 
on the situation, there may be a natural set to use, but all 
carry identical information. For example, when speaking 
with traders or portfolio managers to obtain interest rate 
assumptions for pricing an annuity product, an actuary 
would likely ask about the yield curve. When discounting 
a stream of fixed and certain cash flows arising from 
structured settlement annuity liabilities to obtain a cur- 
rent market value, an actuary would naturally use spot 
rates. When constructing an arbitrage-free theory of 
interest rate dynamics, most financial economists would 
use forward rates as the starting point. 

3. Discrete versus Continuous 
Models  

Throughout this paper, the term state of the worm 
refers to the yield curve prevailing at a particular time 
or epoch. In a model of interest rates, the adjectives dis- 
crete and continuous, without any modifiers, are used 
best to describe the type of states of the world repre- 
sented, not the type of time interval used. In practical 
applications, regardless of the model used, cash flows 
are assumed to occur at discrete time intervals: monthly 
for typical mortgages; quarterly for CMOs, preferred 
stocks, and some floating-rate bonds; and semiannually 
for typical bonds. In asset-liability cash-flow analyses, 
quarter-year periods typically are used. So the basic 
issue is not whether discrete-time models are to be pre- 
ferred to continuous-time models; rather, it is whether 
discrete-state models are to be preferred to continuous- 
state models. 

Most of the recent literature describes discrete mod- 
els, in which the states of the world are represented by 
nodes on a lattice (refer to the papers [2], [1 I], and [18] 
cited earlier). The vast majority of such models utilize 
binomial lattices, on which the world evolves from any 
given state at one epoch to one of two different states at 
the next epoch. These two states at the end of a time 
interval are usually referred to as the up state and the 
down state with respect to the state at the beginning of 
the interval. For reasons of computational efficiency, 
connected lattices are almost always used. From any 
node in a connected lattice, the two-period evolution of 
states up first, then down and the two-period evolution 
of states down first, then up must lead to the same end- 
ing node. In a connected lattice, the world can evolve 
from a single initial state at epoch 0 to one of two states 
at epoch 1, to one of three states at epoch 2, and so on, 
to one of H + 1 states at epoch H. In a connected bino- 
mial lattice model, it is unlikely that the possible states 
of the real world will be sampled sufficiently finely at 
the early epochs. To remedy this problem, the time 
interval can be reduced. For example, with daily inter- 
vals, there are about 30 states at the end of any one- 
month period, but the computational demands of creat- 
ing and using such a model can be enormous, especially 
for long-term assets or liabilities. Moreover, it is unnat- 
ural (and should be unnecessary) to choose a time inter- 
val much shorter than the shortest period between cash 
flows for typical assets and liabilities. Thus, the coarse- 
ness-of-sampling difficulty of connected lattice models 
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remains in many practical situations. Continuous mod- 
els do not suffer this weakness. 

Continuous-state models are described in the aca- 
demic literature by means of differential equations that 
represent continuous-time stochastic processes (refer to 
the papers [8] and [14] cited earlier, and also to the text 
by Hull [13]). For practical applications, though, the 
continuous-time process needs to be sampled only at 
regular time intervals, and the models are reformulated 
as stochastic difference equations. The time interval is 
often chosen to equal the shortest period between the 
cash flows for the assets and liabilities under study. In 
continuous models, one samples paths of interest rates 
by iterating the difference equation. If P interest rate 
paths are used, there are P states of the world repre- 
sented at every epoch. Because the sample of P states at 
each epoch is drawn from a continuous distribution, the 
resulting paths of interest rates do not appear to have 
been constructed artificially. Stated a little differently, it 
is difficult for an experienced portfolio manager to tell 
whether an interest rate path was generated from a good 
continuous model or was constructed from segments of 
actual interest rate history. The same claim cannot be 
made for interest rate paths sampled from a lattice. 

A connected lattice model has a significant weakness 
that can be overcome by using a continuous model. For 
a connected lattice to be arbitrage-free (defined in Sec- 
tion 4), severe constraints have to be placed on how it is 
constructed. These constraints greatly limit the possible 
yield curve dynamics, and for most models, the result- 
ing evolution of yield curves does not correspond ade- 
quately to real-world behavior. The problem arises in 
simple lattice models because a single stochastic fac- 
t o r - the  short-term rate of interest---drives the dynam- 
ics of the entire yield curve, resulting in perfect 
correlation of yield movements across the curve. In the 
real world, the movements of neighboring segments of 
the yield curve may be highly correlated, but they are 
not perfectly correlated. Arbitrary correlation can be 
accommodated in a continuous model, because differ- 
ent parts of the yield curve can be assumed to follow 
correlated stochastic processes. 

Discrete and continuous models can also be com- 
pared for computational efficiency, which depends on 
the type of problem to be solved. In the case of interest- 
rate-contingent, but path-independent, cash flows, as 

are usually associated with pure options, callable 
bonds, and optional sinking fund bonds, backward 
induction algorithms can be used on a lattice to deter- 
mine the optimal exercise strategies. Such algorithms 
are processed backward in time from the latest epoch to 
the earliest epoch, and such algorithms need to evaluate 
conditions occurring only at all states in the lattice, not 
along all paths through the lattice. From epoch 0 to 
epoch H, there are 2 ~ paths through a binomial lattice, 
but only (H + 1)(H + 2)/2 total states, if the lattice is 
connected. Thus, many option-pricing problems can be 
solved efficiently and accurately on a connected lattice. 
Without a lattice (whether connected or not), backward 
induction is not possible. From a purely mathematical 
viewpoint, it is difficult to construct optimal exercise 
strategies for many option problems by doing calcula- 
tions on interest rate paths sampled from a continuous 
model. From a practical viewpoint, note that real-world 
options are exercised by people who manage portfolios 
or trading positions, or who run corporations or other 
businesses. The behavior of these people, as to their 
strategies for rational (if not mathematically optimal) 
exercise of the options they hold, can be modeled suffi- 
ciently accurately that the options are valued properly 
by way of calculations performed on paths sampled 
from a continuous model. 

Many important problems involve path-dependent 
cash flows, for example, the pricing of prepayable mort- 
gages and instruments derived from them, and the valu- 
ation of interest-sensitive insurance liabilities. For such 
problems, the possible paths of interest rates must be 
considered, not merely the possible states of the world. 
A connected lattice offers no special computational 
advantages in these situations. In fact, when path- 
dependent cash flows are involved and a lattice model is 
used, P paths of interest rates will have to be sampled, 
just as if a continuous model were being used. 

In summary, several compelling factors favor the use 
of continuous-state models over discrete-state models: (i) 
a discrete model's lack of computational advantage in the 
common case of path-dependent cash flows; (ii) the need 
to use the same model consistently for all assets and lia- 
bilities, whether their cash flows are path independent or 
path dependent; and (iii) a continuous model's ability to 
sample states of the world sufficiently densely and to 
accommodate realistic yield curve dynamics. 
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. Riskless Arbitrage, Complete 
Markets, and the Risk-Neutral 
World 

4.1 Basic Concepts 
This section is shorter than it could be, so that we can 

proceed to the main subject of the paper. The underlying 
mathematics are generally presented in an imposing 
manner and have been the subject of numerous lengthy 
seminal papers on the application of stochastic process 
theory to financial economics. The topic of riskless arbi- 
trage is dealt with well in the paper by Pedersen, Shiu, 
and Thorlacius [18], and brief comments on the role of 
the risk-neutral world in option-pricing calculations can 
be found in the text by Cox and Rubinstein [6]. 

The concept of a riskless arbitrage opportunity is not 
difficult, ff one asset or portfolio of assets can be sold 
and the proceeds of the sale can be used to purchase a 
different asset or portfolio of assets whose performance 
will be superior to that of the original asset or portfolio 
over a specified holding period (infinitesimal or finite 
depending on the situation), regardless of the states of 
the world during and at the end of the holding period, 
then a riskless arbitrage opportunity is said to exist. One 
need merely sell the first asset or portfolio and purchase 
the second to be guaranteed of having more wealth at 
the end of the holding period without having incurred 
greater risk. The reason that such an opportunity is said 
to be riskless is that wealth can be created without 
investing any capital at all by selling the first asset short 
(that is, selling it before purchasing it), and using the 
proceeds of the short sale to purchase the second asset. 
In this situation, there is no net outlay of funds, but 
there is a guarantee of positive wealth at the end of the 
holding period, because the second asset can then be 
sold for more than is then needed to cover (close out) 
the short position by purchasing the first asset. 

Financial economists and other reasonable people 
assume that no riskless arbitrage opportunities exist in 
an equilibrium world. In other words, prices of assets 
are assumed to adjust continuously to eliminate oppor- 
tunities for riskless arbitrage. For this to occur, a num- 
ber of assumptions must be made: assets are perfectly 
divisible, unlimited short sales are possible, trading 
takes place continuously without transaction costs, 
investors act rationally and prefer more wealth to less 
wealth, and there are no taxes. Although these assump- 

tions are quite stringent, one should not debate too 
strenuously whether small arbitrages can exist in the 
real world for brief periods because the assumptions are 
only approximations to reality. Instead, one should 
regard the concept of an equilibrium world in which 
riskless arbitrage opportunities do not exist as funda- 
mental to constructing a sound financial theory for pric- 
ing assets. 

To see how the concept of riskless arbitrage can lead 
to a theory for establishing the relative prices of assets, 
consider again the situation described above, modified 
slightly. Suppose that an asset for which one wants to 
establish the arbitrage-free price is equivalent to a port- 
folio of different assets for which one knows the prices. 
Equivalence is used in the sense that the performance of 
the single asset and that of the portfolio are identical 
over a specified holding period. Then it follows that the 
single asset and the portfolio of assets must have the 
same prices, or else there would be a riskless arbitrage 
opportunity, wherein the more expensive one could be 
sold short and the less expensive one purchased, guar- 
anteeing a profit without taking any risk. Thus, one 
establishes the arbitrage-free price of the single asset as 
equal to the known price of the portfolio of assets. For 
this approach to be generally applicable and therefore 
lead to a pricing theory, it is necessary to assume that 
the financial markets are complete, meaning that any 
given asset is equivalent to some portfolio of fundamen- 
tal assets. 1 This replicating porO~olio might not be 
equivalent to the given asset over all holding periods. 
The portfolio's holdings might have to be adjusted from 
time to time, perhaps continuously, to maintain the 
equivalence. Having to rebalance the replicating portfo- 
lio is of no consequence, however, because the ability to 
trade continuously absent transaction costs, as assumed 
earlier, enables equivalence to be maintained without 
having to inject additional money into the portfolio; the 
replicating strategy is said to be self-financing. 

ff the financial markets are complete and no opportu- 
nities for riskless arbitrage exist, then the prices of all 
assets can be determined relative to the prices of their 
replicating portfolios. Under these assumptions, the rel- 
ative prices of assets cannot depend on individual inves- 
tors' preferences, which include their differing 
subjective views on the probabilities of occurrence of 
various future states of the word  and their differing 
degrees of aversion to risk. Otherwise, riskless arbitrage 
opportunities would arise. Because relative asset prices 
must be preference-free, we can choose a frame of 
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reference in which the pricing of assets is particularly 
straightforward, namely, the risk-neutral worM. It does 
not mean that we must adopt such a setting, only that we 
are permitted to do so, and that we will obtain the cor- 
rect relative prices for assets ff we do. Black and Scholes 
[3] derived their now-famous formula for the price of a 
call option on a share of non-dividend-paying stock in 
terms of the price of the underlying stock by applying 
the no-riskless-arbitrage condition to a combined posi- 
tion of buying the call option and selling short its repli- 
caring portfolio. They solved the resulting differential 
equation for the price of the call option after establishing 
appropriate boundary conditions. Only later did others 
show that a simpler derivation is possible by moving 
into the risk-neutral world and performing the pricing 
calculation there (for example, refer to [5]). 

What is the risk-neutral world, and why are pricing 
calculations simpler there? In the risk-neutral world, 
investors do not require a premium for assuming risk. 
Thus, assets are priced at their expected present values. 
In other words, risk-neutral investors behave like tradi- 
tional actuaries. When pricing assets, they project cash 
flows along interest rate paths, then discount the cash 
flows at the one-period interest rates occurring along 
the paths, and finally calculate the expected present 
value by weighting the present value for each path by 
that path's probability of occurrence. ~ Moreover, in the 
risk-neutral world, the probabilities of occurrence of the 
various paths do not depend on investors' subjective 
views of the likelihood that different future states of the 
world will arise. I now show how this description of the 
risk-neutral world can be used to construct an arbitrage- 
free model of interest rates. 

In a binomial model, the states of the world repre- 
sented at the nodes of the lattice can be determined 
from the assumed stochastic process for the one-period 
interest rate, for example, a discrete geometric Brown- 
ian motion. Then, the risk-neutral probabilities of up 
and down transitions at each node can be established to 
ensure that all zero-coupon bonds are priced properly 
by the expected-present-value algorithm described 
above. Alternatively, the no-riskless-arbitrage condi- 
tions can be used to establish the possible states of the 
world, given assumed risk-neutral probabilities for up 
and down transitions at each node; for example, 0,. t for 
the up transition and 1 - 0,. t for the down transition at 
the i-th node at epoch t, with 0 < 0,,, < 1. This is the 
approach used by Pedersen, Shiu, and Thorlacius [18]. 
In a continuous model, it is convenient to adopt the 

approach of assuming that the risk-neutral probabilities 
are given, and then generating a finite number of inter- 
est rate paths appropriately. It is usual to generate 
equal-probability paths of interest rates by randomly 
sampling, epoch to epoch, from an assumed stochastic 
process, and to adjust, epoch by epoch, the distribution 
of interest rates to ensure that the no-riskless- arbitrage 
conditions hold. 

4.2 Example." A One-Factor Lognormal 
Model of Short-Term Interest Rates 

The rest of this section is devoted to an example in 
which the natural logarithm of the ratio of the one- 
period rate of interest at epoch t to the one-period rate 
of interest at epoch t - 1 is normally distributed with 
mean ~t and standard deviation a. It is conventional to 
refer to this example as a lognormal stochastic process 
for the one-period (spot) rate. The initial term structure 
of interest rates (all the spot rates or all the spot prices) 
is assumed to be specified exogenously. The objective is 
to generate an arbitrage-free set of P equal-probability 
paths of one-period interest rates out to epoch H, the 
assumed horizon for the desired application. In practi- 
cal applications, limitations on computer memory and 
execution time usually constrain the choice of P to 
between 100 and 1000. 

A single path of one-period interest rates can be cre- 
ated by starting from the given initial one-period rate, 
then randomly sampling from the assumed lognormal 
distribution a one-period rate at epoch 1 and using it as 
the starting one-period rate for randomly sampling from 
the assumed lognormal distribution a one-period rate at 
epoch 2, and so on, out to epoch H. Independently 
repeating this entire sequence of computations P times 
gives rise to P equal-probability paths of one-period 
interest rates. Unfortunately, the set of paths is not arbi- 
trage free. To obtain an arbitrage-free set of paths, all P 
one-period rates at each epoch must be multiplied by an 
appropriate adjustment factor that is the same for all 
Prates, but that differs from epoch to epoch. 3 
The proper approach involves generating and adjusting 
the one-period rates at epoch 1, which evolve from the 
given initial one-period rate at epoch 0; then generating 
and adjusting the one-period rates at epoch 2, which 
evolve from the adjusted one-period rates at epoch 1; 
and so on; and finally generating and adjusting the one- 
period rates at epoch H, which evolve from the adjusted 
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one-period rates at epoch H - 1. The arbitrage-free 
algorithm is described more precisely as follows: 

Step 1. Using the initial (epoch 0) one-period rate and the 
assumed lognormal process, generate P random one- 
period rates at epoch 1. Call these the epoch I unad- 
justed one-period rates. Calculate P epoch I adjusted 
one-period rates by multiplying all P epoch 1 unad- 
justed one-period rates by the adjustment factor exp 
[~'l - ~t], where ~.1 is determined so that the following 
condition holds: The expected present value of a $1 
payment at epoch 2 is equal to the given initial spot 
price of the two-period zero-coupon bond. The 
expected present value is measured at epoch 0 and is 
based on the initial one-period rate and the epoch 1 
adjusted one-period rates. 

Step 2. Using the epoch 1 adjusted one-period rates and the 
assumed lognormal process, extend the P paths of 
interest rates one period by generating P random 
one-period rates at epoch 2. Call these the epoch 2 
unadjusted one-period rates. Calculate the P epoch 
2 adjusted one-period rates by multiplying all P 
epoch 2 unadjusted one-period rates by the adjust- 
ment factor exp [L 2 - g], where L~ is determined so 
that the following condition holds: The expected 
present value of a $1 payment at epoch 3 is equal to 
the given initial spot price of the three-period zero- 
coupon bond. The expected present value is mea- 
sured at epoch 0 and is based on the initial one- 
period rate and the epoch t adjusted one-period rates 
fo r t=  1,2. 

Step H. Using the epoch (H - 1) adjusted one-period rates 
and the assumed lognormal process, extend the P 
paths of interest rates one period by generating P 
random one-period rates at epoch H. Call these the 
epoch H unadjusted one-period rates. Calculate the 
P epoch H adjusted one-period rates by multiplying 
all P epoch H unadjusted one-period rates by the 
adjustment factor exp [~., - It], where ~., is deter- 
mined so that the following condition holds: The 
expected present value of a $1 payment at epoch H 
+ 1 is equal to the given initial spot price of the (H + 
1)-period zero-coupon bond. The expected present 
value is measured at epoch 0 and is based on the ini- 
tial one-period rate and the epoch t adjusted one- 
period rates for t = 1, 2 ..... H. 

The expected present values referred to in steps 1 
through H above are calculated as described earlier in 
this section: that is, as the simple arithmetic mean 
(since all paths have equal probabilities 1/P) of the P 
present values obtained by discounting the cash flows 
occurring along each path at the relevant one-period 
interest rates occurring along the path. The sequence ~.1, 

L~ ..... ku is referred to as the time-dependent drift of  the 
stochastic process. Thus, constraining the process to be 
arbitrage free is tantamount to setting its time-depen- 
dent drift so that all zero-coupon bonds are priced at 
values equal to those derived from the exogenously 
specified initial yield curve. Otherwise, trivial riskless 
arbitrages would exist. Note that all traces of the origi- 
nally assumed drift IX are eliminated by the adjustment 
factors exp [~ - IX]. In essence, the drift is reset from IX 
to the appropriate ~ at each epoch t to ensure that the 
model is arbitrage free. 

Performing steps 1 through H ensures that the 
expected-present-value algorithm will produce the 
observed (exogenous) initial prices for all zero-coupon 
bonds having maturities less than or equal to H + 1 peri- 
ods. As a consequence, any stream of fixed and certain 
cash flows occurring at epochs up to H + 1 will be 
priced fairly relative to the zero-coupon bonds, because 
an arbitrary stream of fixed and certain cash flows is 
equivalent to some portfolio of zero-coupon bonds. 
Similarly, the arbitrage-free set of paths of  one-period 
interest rates and the expected-present-value algorithm 
can be used to price any interest-rate-contingent stream 
of  cash flows occurring at epochs up to H. (In general, 
one cannot get as far as epoch H + 1, because the cash 
flows at epoch H + 1 may depend on the adjusted one- 
period rates at epoch H + 1, and those rates have not 
been determined.) The prices so obtained for interest- 
rate-contingent cash flow streams will be arbitrage free 
relative to the prices of the zero-coupon bonds, because 
any such stream can be shown to be equivalent to some 
dynamically adjusted replicating portfolio consisting 
only of zero-coupon bonds. 

One has to be careful about what is meant by the 
descriptor "arbitrage f ree"  The H-step algorithm 
ensures a fair price at epoch 0 for any stream of  cash 
flows not extending beyond epoch H. The epoch 0 price 
of  the cash-flow stream is said to be "fair" relative to 
the epoch 0 prices of all zero-coupon bonds, because 
opportunities for riskless arbitrage between the cash- 
flow stream and the set of zero-coupon bonds have been 
eliminated through the application of the H-step algo- 
rithm. The key question, however, is whether the H-s~ep 
algorithm ensures arbitrage-free dynamics for the full 
yield curve at all epochs or just for the one-period rate 
at all epochs. The answer can be either yes or no, 
depending on the objective, ff  some control over the 
statistical properties of yield curve movements is 
desired, such as being able to specify exogenously the 
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correlation between the movements of the one-period 
rate and the current-coupon yields at all other maturi- 
ties, then the answer is no: the H-step algorithm will not 
produce interest-rate behavior consistent with the exter- 
nally supplied assumptions. The reason is that the sto- 
chastic behavior depends on only one factor: the 
dynamics of the one-period rate determines the dynam- 
ics of all other parts of the yield curve. 

To see this, suppose we are situated at an arbitrary 
state of the world (namely, an arbitrary value of the 
one-period rate) at epoch t, where t < H. We determine 
the prices, and hence the yields, of all zero-coupon 
bonds with maturities up to H + 1 - t periods by gener- 
ating a large number of paths of one-period rates ema- 
nating from this state and then using the expected- 
present-value algorithm. In generating the paths ema- 
nating from the arbitrary state, we are forced to use the 
drift parameters )~1 + 1 ..... ~,H that have already been 
determined. Thus, utilizing the H-step algorithm estab- 
lishes the dynamics of the full yield curve in this one- 
factor model of interest rates. The model is fully arbi- 
trage free at the initial state and at all future states of the 
world, but a huge sacrifice is necessary to achieve this 
result: the ability to specify the desired yield curve 
dynamics must be (at least partially) surrendered! 

Before generalizing the one-factor model to a multi- 
ple-factor model and therefore gaining control over 
yield curve behavior, we consider how the H-step algo- 
rithm described above achieves arbitrage-free stochastic 
interest-rate dynamics. Earlier, we stated that a model 
of interest rates can be rendered arbitrage free by either 
(i) assuming the states of the world to be given and the 
risk-neutral probabilities to be determined, or (ii) 
assuming the risk-neutral probabilities to be given and a 
finite number of states of the world to be determined 
appropriately. The H-step algorithm uses the latter 
approach. It assumes that the P paths have equal proba- 
bility, and then determines P one-period rates at each 
epoch in a manner to ensure that the no-riskless-arbi- 
trage conditions are satisfied. Because theoreticians 
generally speak and write in terms of the former 
approach, it makes sense to ask whether there is some 
relhtionship between the approaches. The answer is yes. 
Take the limit as P tends to infinity and ensure that all 
possible paths of one-period interest rates are repre- 
sented. In this case, because the full continuous distri- 
bution of states at each epoch is represented, the H-step 
algorithm actually establishes the probability distribu- 
tion of paths in the risk-neutral world. Thus, when all 

possible paths are represented, solving for the risk-neu- 
tral drift of the stochastic process is equivalent to estab- 
fishing the risk-neutral probabilities. 

5. Constructing an Interest Rate 
Generator 

This section extends the approach described in Sec- 
tion 4.2 to allow different parts of the yield curve to be 
modeled simultaneously. This is important in many 
practical applications. For example, prepayments aris- 
ing from a seasoned pool of fixed-rate residential mort- 
gages are commonly modeled as depending on the 
currently prevailing and recent levels of the ten-year 
U.S. Treasury bond yield. To project the cash flows 
from the mortgage pool, a stochastic model of ten-year 
U.S. Treasury bond yields is needed. To price the pool 
of mortgages properly, that model must be arbitrage 
free. Because movements of short-term U.S. Treasury 
bill yields and ten-year U.S. Treasury bond yields are 
correlated, the models of the short-term yields and ten- 
year yields must be developed together and consis- 
tently. Other similar examples abound: insurance com- 
pany interest-sensitive life and annuity products are 
often priced relative to prevailing intermediate-term 
U.S. Treasury note yields; most adjustable-rate pre- 
ferred stocks have quarterly dividends that reset off the 
highest of the three-month U.S. Treasury bill yield, the 
ten-year U.S. Treasury note yield, and the 30-year U.S. 
Treasury bond yield; and many options are written on 
intermediate-term U.S. Treasury notes and bonds. 

Even when many parts of the yield curve are modeled 
together, the one-period rates continue to play a special 
role. In the expected-present-value algorithm, only the 
one-period rates are used to discount cash flows. Yields 
of bonds with maturities greater than one period affect 
the arbitrage-free price of a stream of interest-rate-con- 
tingent cash flows only to the extent that the amounts of 
the cash flows depend on those yields. The examples 
listed above illustrate such dependence. 

5.1 What Random Variables Should Be 
Modeled? 

Before describing how to build a stochastic interest 
rate generator, we must decide what interest rates are to 
be modeled. From Section 2, the choices are: current- 
coupon yields, spot rates, or forward rates. Because 
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these three sets of rates are equivalent, any one set may 
seem to be as good as another for stochastic modeling 
purposes, but that is not the case. From the recent litera- 
ture, it is clear that academicians prefer to model for- 
ward rates. It is useful to understand why. 

If one views interest rates as the cost of  money, it is 
reasonable to constrain them to be non-negative. Some 
models permit negative interest rates (Vasicek [23] and 
Ho and Lee [11], for example), but most theoreticians 
and practitioners regard non-negativity of interest rates 
as a basic constraint that an acceptable model must sat- 
isfy. If all one-period (n,l) forward rates, as defined in 
Section 2, are non-negative, then all spot rates and all 
forward rates are non-negative. Thus, modeling forward 
rates by a process that ensures that they are non-nega- 
tive also ensures that spot rates and current-coupon 
yields are non-negative. Modeling spot rates by a pro- 
cess that ensures that they are non-negative does not 
ensure that all forward rates will be non-negative. For 
example, if both the (n + 1)-year and the n-year spot 
rates are positive, but the n-year spot price is less than 
the (n + 1)-year spot price, then the (n,1) year forward 
rate will be negative, as discussed in Section 2. Model- 
ing current-coupon yields by a process that ensures that 
they are non-negative can produce a result even more 
pathological, because negative spot prices can occur, 
leading to spot rates that are complex numbers (having 
both real and imaginary parts). 

The preceding points would seem to make a clear 
case for modeling forward rates, and that is the route 
that authors of most recent papers have chosen. (Heath, 
Jarrow, and Morton [8] is an example.) From a practical 
viewpoint, the trouble with modeling forward rates is 
that few people seem to have an intuitive feel for how 
forward rates should behave. Traders in U.S. govern- 
ment securities often do not know what a theoretician 
means by a one-period forward rate, and they certainly 
do not have an intuitive feel for the relative volatilities 
of the various (n,1) period forward rates. Nor do they 
have a view on whether the movements of the (n,1) 
period forward rates for different n are weakly or 
strongly correlated. These observations cannot be 
ignored if the goal is to build a stochastic generator that 
will be useful in practical situations. 

What fixed-income traders and portfolio managers 
understand well is the yield curve. Thus, it seems rea- 
sonable to build a model using current-coupon yields as 
the random variables. Of course, the architects and 
engineers of such models have a strong duty to test how 

frequently pathological spot rates and forward rates 
arise when reasonable ranges of input assumptions are 
used, and to reject models for which that frequency is 
too high (greater than 1 percent, for example). A rejec- 
tion criterion is necessary, because the so-called pathol- 
ogies are actually just-different forms of riskless 
arbitrage opportunities which we have so assiduously 
eliminated elsewhere. 

A model that allows the user to input assumptions 
about the behavior of current-coupon yields, but which, 
perhaps unknown to the user of the model, simulates 
forward rates of interest as the random variables, is the 
ideal solution to the dilemma posed above. This is 
undoubtedly the proper course to follow, but I have not 
yet discovered a wholly satisfactory method for trans- 
lating input assumptions relating to current-coupon 
yield volatilities, correlations, and mean reversion 
strengths (all defined in Section 5.2) into model param- 
eters that apply to a specified stochastic process fol- 
lowed by forward rates. Because this is likely to be the 
natural evolution of interest rate models, I should 
remark that the stochastic process introduced in Section 
5.2 is as valid for spot rates or forward rates of interest 
as it is for current-coupon yields. Thus, most of the 
material presented in Sections 5.2 and 5.3 can be read 
as if it applies directly (or with obvious modifications) 
to spot or forward rates of interest. 

5.2 A Continuous Stochastic Model of 
Current-Coupon Yields 

Let rk. ̀ denote the random variable for the yield at 
epoch t of the non-callable current-coupon bond that 
has a maturity of k periods: The natural logarithm of r~., 
is assumed to obey the following process: 

In rk~. i = ~,kj ÷ l + ( 1 - t~)ln rk., + t~ e,., ÷ i 

where ~,k.t+l is the drift that was introduced in Section 4, 
t~k measures the strength of mean reversion (0<t~<l), tr~ 
is the logarithmic yield volatility, and ek.,÷ t is a random 
standard normal deviate (that is, a random normal devi- 
ate with zero mean and unit variance). It is assumed that 
eja and ek., are independent random variables if s ~ t and 
that they have linear correlation coefficient Pjk if  S = t, 
with 9jS" = 1. 

The subscript k for the random yield variables and 
the parameters has been used to indicate that there is 
one equation for each current-coupon bond maturity. 
Each yield r k follows its lognormal random walk with 
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its own mean reversion t~k, volatility ok, and time- 
dependent drift ~.,.,. Using a lognormal process ensures 
that no r e can ever be negative. The stochastic processes 
followed by the yields of the current-coupon bonds of 
the various maturities are not independent of each 
other; the contemporaneous shocks ej and e~. to the natu- 
ral logarithms of the current-coupon yields rj and r k, 
respectively, have correlation Pjk. 

That ~e can be interpreted as the strength of mean 
reversion for the yield r k becomes a little clearer if the 
drift is time-independent and given by ~'k., = ~e In ~k at 
all epochs t, where I.t~ is the mean reversion level of r k, 
apart from a factor that is generally close to unity if t~e is 
not too small. An explicit expression for the mean 
reversion level is given in Section 5.3. The larger is ~k, 
the faster the expected value of r e approaches its long- 
run limit. Thus, t~k measures the strength of the mean 
reversion. When ~k = 0, the yield r e follows a pure log- 
normal random walk with drift, and there is no finite 
long-run mean level of yields. When t~k = 1, the yield r e 
has no memory whatsoever of its levels at previous 
epochs and, apart from time-dependent drift, has the 
same lognormal probability distribution at each epoch. 

The formula for re.,+ 1 is a first-order difference equa- 
tion for which the initial condition is the initial current- 
coupon yield rk. 0. The difference equation is said to be 
first-order autoregressive because the value of rk.,+ 1 can 
be determined, apart from the random shock ek.,÷ 1, by 
looking back only one period to the value of re. ' . In 
practical applications, the difference equation is used as 
the basis for iterative random simulation. A single path 
of interest rates can be generated randomly by starting 
from rk. o and iterating one period at a time to obtain rk, t, 
re. 2 ..... re~. The set of rk. , for all k defines the yield curve 
at epoch t, and the sequence of yield curves at epochs 0, 
1, 2 ... . .  H defines the interest-rate path. The stochastic 
nature of the interest-rate path derives from the random 
shocks e that occur from epoch to epoch along the path. 

Consider a single path of interest rates. In generating 
the path on a computer, a column vector e of standard 
normal deviates must be generated randomly at each 
epoch. There is one element of e for each maturity 
index k. If the correlation matrix p is positive definite, it 
can be factored as p = LL r, where L is a lower triangular 
matrix. This is known as the Choleski or square-root 
factorization of p (refer to [4]). Suppose ~ represents a 
column vector of independent random standard normal 
deviates. Then, the column vector e = L~ of random 
standard normal deviates has a correlation matrix equal 

to the given matrix p, as desired. The column vector 
can be generated by any acceptable method for produc- 
ing random standard normal deviates, such as the polar 
method [24]. 

The stochastic process specified above possesses a 
useful scaling property that allows the interest-rate 
model to be adjusted easily to whatever time interval 
between epochs is desired. If the difference equation is 
applied s times rather than once, it takes the form: 

lnrk .... = Ak,t+s + (1 -~k ) ln  rk., + ~k ~Ek.,+, 

where Ak.,+ s depends on ~'e., for l<u<s, ¢Pk, and s; D e 
depends on ~k and s; ~k depends on ~,, ~k, and s; and 
Pjk, the scaled linear correlation coefficient, depends on 
PJ~' ~1' ~k, and s. Ek,,+ s is a random standard normal devi- 
ate. Thus, under a scaling of the time interval from 1 to 
s, the same form of process obtains, but its parameters 
must be scaled appropriately relative to the parameters 
for the unscaled process. To emphasize the similarity, I 
have used upper-case Greek letters for the scaled pro- 
cess to correspond to the lower-case Greek letters for 
the unscaled process: specifically, ~.<-->A, ~<-->~, ff<--+Z, 
pc-->P, and Ec-->E. 

What parts of the yield curve should be modeled? If a 
quarter-year time interval were used, for example, one 
could model the yields for all current-coupon bonds with 
maturities at quarter-year intervals up to the maximum 
maturity bond needed for the particular application. In 
fact, it might seem that the yields for all bonds must be 
modeled if a fully arbitrage-free set of paths is desired. 
This is true if one insists that each random yield strictly 
follow the specified stochastic process. Modeling all 
maturities leads to a very large computing problem, as to 
both memory requirement and execution time. I believe 
that it is preferable to model only what Ho [10] has 
called key (spot) rates or key (current-coupon) yields and 
to obtain all other needed rates or yields by linear inter- 
polation. Reitano describes the same approach in a recent 
paper [20]. 

The justification for not using all bond maturities in 
the model is that fixed-income traders generally use the 
following new-issue or outstanding U.S. Treasury secu- 
rities as benchmarks: bills having maturities of 3, 6, and 
12 months; notes having maturities of 2, 3, 5, 7, and 10 
years; and bonds having maturities of 20 and 30 years. 
These are the key maturities that should be modeled. 
The reference yields for hypothetical current-coupon 
instruments with other maturities are usually quoted by 
traders on the basis of linear interpolation between the 
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key yields. A result of using the key-yield-with-linear- 
interpolation approach is that the random yields of 
bonds with other than key maturities will only approxi- 
mately follow the form of stochastic process that is pre- 
cisely followed by the key yields, and the non-key 
yields will not be arbitrage free. This sacrifice, made in 
response to the computational limitations of most com- 
puters, will likely be acceptable only if sufficiently 
many key maturities are used and if those maturities are 
spaced sufficiently closely. 

5.3 Adjusting the Drift Parameters 
How to set the drift parameters depends on the appli- 

cation. For example, to permit investors to base their 
analyses of the risk-reward tradeoffs among various 
risky investment strategies on their own subjective views 
regarding the behavior of interest rates, the model can be 
tuned to characterize the real world. This is accom- 
plished by setting the drift parameters appropriately. A 
commonly used assumption in the real world is that the 
drift is time independent: specifically, that ~'k,, = t~k In I.t~ 
at all epochs t. In this case, by exponentiating the differ- 
ence equation for In rk.,+ s, then taking the mathematical 
expectation, and finally taking the limit as s tends to 
infinity, it can be seen that the long-run means of the 
random variables r are equal to ~texp[~/2(1 - (1 - t~)2)], 
where the subscripts k have been omitted for notational 
convenience. These are the mean reversion levels of the 
key yields. Alternatively, the investor can set a time- 
dependent drift of the process to reflect his or her short- 
term and intermediate-term views of the trend of the 
expected levels of the key yields, followed by a time- 
independent drift to establish the desired long-term 
mean reversion levels of the key yields. 

The term "real world" is not intended to convey 
either the notion of always being the "proper" or "supe- 
rior" framework for analysis or the notion that other 
worlds are somehow always "improper" or "inferior" 
frameworks for analysis. The real world is an environ- 
ment in which different investors have differing subjec- 
tive views, differing degrees of risk aversion, and 
differing utility functions. Thus, the real world differs 
from the risk-neutral world described in Section 4, 
which is an artificial construct that enables fair prices to 
be calculated for assets and liabilities (whether they are 
potentially "risky" or not) in the simplest manner possi- 
ble: specifically, by way of the expected-present-value 
algorithm. The analysis of risk-reward tradeoffs among 

various risky strategies is carded out in the real word  
by (i) constructing a frontier of strategy possibilities, all 
of which are efficient in the sense of having the least 
risk for a given expected return, and then (ii) selecting 
the optimal efficient strategy on the basis of one's own 
utility function. These important concepts of modern 
portfolio theory are covered in the text by Sharpe and 
Alexander [22]. 

If the intended use of the interest rate model is to 
determine the arbitrage-free price of an interest-rate- 
contingent stream of cash flows, the drift parameters 
must be set appropriately to characterize the risk-neu- 
tral world. Adjusting the drift parameters properly is a 
more difficult problem when many key yields are 
involved than when only the one-period rate is 
involved. In order to obtain yield curve dynamics that 
exhibit sufficiently many degrees of freedom (by means 
of correlated stochastic processes for the key maturi- 
ties), and yet still ensure that the model is arbitrage free 
(at the key maturities), the drift parameters must be 
state dependent, not merely time dependent. The princi- 
pal objective in adjusting the drift parameters of the 
processes is to ensure that the expected-present-value 
algorithm prices correctly the exogenously specified 
initial yield curve. However, any future state must also 
be viewed, at the epoch it occurs, as an "initial" state, 
and the drift parameters must be adjusted properly from 
that state forward in time in order to ensure that the 
expected-present-value algorithm also prices correctly 
the yield curve at the new "initial" state. 

The arbitrage-free algorithm is completely specified 
by showing how to start from an arbitrary "initial" state 
and create fully arbitrage-free yield curves one period 
later. The local drift of each of the correlated processes 
is adjusted to satisfy the no-riskless-arbitrage condition 
of step 1 in the method described in the next paragraph. 
(Only step 1 is ever used in this approach, but it is used 
at the true initial state and at each future state occurring 
at each future epoch out to the horizon.) Fortunately, the 
procedure does not require that a sample of paths be 
generated from each "initial" state. Instead, the drift 
adjustment is accomplished by computing the relevant 
expected present values in the no-riskless-arbitrage 
conditions as integrals over the entire continuous con- 
ditional lognormal distribution of states one period 
ahead. The integrals can be evaluated easily and accu- 
rately by the Gauss-Hermite method [9], and the local 
drift parameters can be determined efficiently by New- 
ton-Raphson iteration [9]. If spot rates of interest are 

VII. An Actuarial Layman's Guide to Building Stochastic Interest Rate Generators 297 



assumed to be locally lognormally distributed, the com- 
putations are practical on a mainframe computer or its 
equivalent. However, when either current-coupon yields 
or forward rates of interest are assumed to be locally 
lognormally distributed, the number of independent sto- 
chastic factors in the model must be limited to a small 
number, such as two or three, for the computations to be 
feasible. Note that bonds of all maturities can be studied 
in a two-factor or three-factor model, but the "degrees 
of freedom" embedded in the variance-covariance 
matrix that is constructed from the volatility vector a, 
and the correlation matrix p will be exactly two or 
three, respectively. Further details of the iterative 
method for obtaining a set of paths sampled from a 
model that is fully arbitrage free at the initial state and 
all future states of the world will be provided in a sub- 
sequent technical note. The essential points are covered 
in an article by Miller [17]. 

A yield curve model that is commonly used because it 
is computationally less demanding to construct than the 
model described above, but which is not free of risldess 
arbitrage opportunities at future states of the world, can 
be obtained by generalizing the no-risldess-arbitrage 
conditions discussed in Section 4. The objective is to 
generate a set of P equal-probability paths of yield curves 
(defined at the key maturities k) out to epoch H, the 
assumed horizon. The procedure is essentially the H-step 
inductive algorithm discussed in Section 4. The exoge- 
nously given initial set of key yields rk. o is the starting 
point. Step number t in the procedure assumes that P 
adjusted yield curves have been obtained at all epochs 
from 0 to t - 1. Using (i) the P adjusted yield curves at 
epoch t -  1, (ii) the assumed stochastic process, and (iii) 
trial values of the drift parameters Xk. , for all key maturi- 
ties k, the interest rate paths are extended one period by 
generating P unadjusted yield curves at epoch t. Adjusted 
yield curves at epoch t are obtained by solving for the 
values of the drift parameters ~,k~ that force the following 
no-riskless-arbitrage condition to hold for all key maturi- 
ties k: At epoch 0, the price of the (k + t)-period zero-cou- 
pon bond, as computed by applying the expected- 
present-Value algorithm, must equal the given initial 
price of the (k + 0-period zero-coupon bond, that is, the 
(k + 0-period spot price that is derived from the given ini- 
tial yield curve. The following technical points are 
intended to be helpful to anyone who attempts to pro- 
gram the algorithm: 
• To apply the no-riskless-arbitrage condition, the 

spot-prices at key maturities must be calculated. This 

means that yield curves specified at all maturities, 
not just key maturities, must be obtained before they 
can be transformed into the corresponding curves of 
spot rates and spot prices. For any maturity that is 
between two adjacent key maturities, the associated 
current-coupon yield is found by interpolating lin- 
early between the relevant key yields, as discussed 
earlier. 
The most difficult part of implementing the algo- 
rithm is solving for the values of the drift parameters 
2L~,, that force the no-riskless-arbitrage conditions to 
be satisfied. The method of false position, also 
known as regulafalsi [9], has been found to give sat- 
isfactory results in that it succeeds in finding the 
roots and usually converges rapidly. 
It was pointed out in Section 5.1 that constraining 
current-coupon yields to be non-negative does not 
preclude negative spot prices from arising. If they do 
occur, trouble is likely to be encountered when solv- 
ing for the drift parameters. In particular, difficulties 
arise in the handling of complex numbers. Remedies 
can be devised for these annoyances, but a descrip- 
tion of them is beyond the scope of this paper. 5 

5.4 Variance-Reduction Techniques 
Because the model described in Section 5.2 must be 

implemented on a computer, either memory capacity or 
execution time will limit the number of interest rate paths 
that can be generated for a given application. Fortunately, 
calculating the arbitrage-free price of an interest-rate- 
contingent cash-flow stream is an expected value prob- 
lem. Only the mean of the distribution of present values 
across paths needs to be determined. None of the higher 
moments of that distribution matter. Nevertheless, the 
entire probability distribution of interest-rate paths, not 
just its mean, affects the arbitrage-free price of a gen- 
eral cash-flow stream. Thus, it is important to sample 
interest-rate paths efficiently, and standard variance- 
reduction techniques are useful in this regard. A good 
reference for this subject is the text by Rubinstein [21]. 

The methods of antithetic variates and stratified sam- 
pling were tested on the simple problem of estimating the 
moments of the probability distribution of the sum of 40 
independent random standard normal deviates and then 
on the more realistic problem of pricing European bond 
options. Each variance-reduction technique was applied 
separately, and then they were applied together. All three 
cases were compared against the control experiment of 
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crude Monte  Carlo sampling, that is, pure random sam- 
piing without any variance reduction technique applied. 
In all situations, an even number of paths P = 2Q was 
used, where Q is a positive integer greater than one. The 
algorithms that were used in selecting a random sample 
of size P are described below for the three variance- 
reduction methods that were studied. 

Antithetic Variates 
A sample of Q independent standard normal deviates 

(n 1, n 2 . . . . .  no) is chosen randomly. Another set of Q 
standard normal deviates is obtained by reversing the 
signs of the first Q deviates. (This step is what gives the 
technique its name.) Together, the two sets of Q devi- 
ates form the required random sample of P deviates, 
which can be displayed descriptively in pairs  as: (nt, - 
nl; n 2, -n2; . . .;  n o, -no) .  This technique results in mir- 
ror-image pairs of paths of the natural logarithms of the 
key yields. 

Stratified Sampling 
The positive haft of the standard normal density is 

divided into Q strata of equal probability liP. A strati- 
fied sample (n 1, n 2 . . . . .  no) is created by placing n; for i = 
1, 2 . . . . .  Q - 1 at the midpoints of the first Q - 1 strata, 
and n o at such point in the Q-th stratum as to ensure 
unit variance for the full sample of P deviates. The 
required random sample of P deviates is obtained by 
shuffling the ordered stratified sample ( - n  o . . . . .  - n  2, - n  1, 
n z . . . . .  no) randomly. Any trace of nonrandom pairing 
disappears completely after random shuffling. 

Antithetic Variates Combined with 
Stratified Sampling 
A stratified sample of Q positive standard normal 

deviates is created as previously described, and each 
deviate in that sample is separately and independently 
multiplied by +1 with probability 1/2 or by -1 with prob- 
ability 1/2. The resulting sample is then shuffled ran- 
domly to produce the sample (n 1, n 2 . . . . .  no), which is 
augmented by another set of Q deviates that is obtained 
by reversing the signs of all the n, for i = 1, 2 . . . . .  Q. The 
required random sample of P deviates is displayed 
descriptively in pairs  as: (nl, - n t ;  n 2, -n2; . . .;  n o, -no).  
This technique results in mirror-image pairs of paths, in 
the sense described above. 

In the test situations in which paths of interest rates 
were used, independent  samples of P random standard 
normal deviates were needed for each key maturity k at 
each epoch t, regardless of the sampling method stud- 
ied. When stratified sampling was used, the stratified 
sample of Q positive standard normal deviates needed 
to be created only once, and that sample was used 
repeatedly in the second and third algorithms described 
above. There are several ways to combine the methods 
of antithetic variates and stratified sampling. The 
approach described above has both advantages and dis- 
advantages relative to other algorithms for combining 
the techniques. 

The effectiveness of the variance-reduction tech- 
niques was tested for sample sizes of P = 100 and P = 
1000. Unfortunately, the results of the tests were 
ambiguous. Each of the three methods generally pro- 
duced satisfactory results relative to using crude Monte 
Carlo sampling, but none of the approaches emerged as 
clearly the most effective. Due to the pair ing  of devi- 
ates that was described above, any method that involves 
antithetic variates always reduces the effective sample 
size to one-half of the sample size for either crude 
Monte Carlo or stratified sampling. Thus, when a given 
statistic is estimated on the basis of a fixed sample size, 
the standard deviation of the error that results when the 
method of antithetic variates is involved is generally 
larger, by a factor of ~2, than the standard deviation of 
the error that results when either crude Monte Carlo or 
stratified sampling is used. However, the method of 
antithetic variates is designed to calculate some staffs- 
tics exactly, regardless of sample size. 6 It is not always 
clear which of these opposing effects on the size of the 
estimation error will dominate. More analysis is needed 
before stronger conclusions can be made about which 
variance-reduction technique is to be preferred in a 
given situation. 

6. Using an Interest Rate Generator 
The first task that must be accomplished before the 

interest rate generator described in Section 5.2 can be 
used is to estimate the parameters of the model and to 
input other necessary assumptions. The generator 
requires as input an initial yield curve rk. 0 that is speci- 
fied at the key maturity indexes k. Although the parame- 
ters of the model can be chosen arbitrarily, it is 
reasonable to begin by using values derived from a his- 
torical analysis of yield curve movements. Performing 
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linear regressions on at least the last two years of 
weekly yield curve data will provide estimates of the 
mean reversion levels Ix and strengths t~, the yield vola- 
tilities is, and the yield shock correlation matrix p, as 
were defined in Sections 5.2 and 5.3.7 The scaling trans- 
formations described in Section 5.2 then must be 
applied to adjust the parameters estimated from the his- 
torical data to values appropriate to the time interval 
used in the stochastic difference equation, for example, 
from weekly periods in the historical data to quarter- 
year periods in the difference equation. When the par- 
tially arbitrage-free version of the yield curve model 
described in Section 5.3 is used, the no-riskless-arbi- 
trage conditions override the mean reversion level 
parameters Ix and result in values of the drift parameters 
~, that depend on the initial yield curve. When the fully 
arbitrage-free version of the yield curve model 
described in Section 5.3 is used, the no-riskless-arbi- 
trage conditions override the mean reversion strength 
parameters t~ as well, thus eliminating the explicit 
effects of mean reversion from the model. 

Once the parameters and the initial yield curve have 
been specified, the model can be used to generate an 
arbitrage-free set of interest-rate paths. This set of paths 
and the expected-present-value algorithm defined in 
Section 4 are all that is needed to be able to project and 
price streams of interest-rate-contingent cash flows: 
callable corporate bonds, mortgage-backed securities, 
CMOs, floating-rate and indexed bonds, futures, 
options, interest rate swaps, caps, and floors, and all 
forms of liabilities. By perturbing or shocking the initial 
yield curve rk. 0 in different ways, one can compute vari- 
ous indexes that measure interest-rate risk. As an illus- 
tration, suppose that the arbitrage-free set of paths has 
been used to value a mortgage-backed security, and the 
resulting price is P. Now, suppose that the initial bond- 
equivalent current-coupon yield curve obtained by lin- 
early interpolating the key yields rk. o is transformed into 
the equivalent term structure with spot rates expressed 
as forces of interest (that is, on a continuously com- 
pounded basis), and that these spot rates are all given 
the same small upward shock A--this is referred to as a 
parallel shock to the term structure. If key yields are 
taken from the yield curve that is equivalent to the par- 
allel-shocked term structure, and are used as a revised 
initial yield curve from which a new arbitrage-free set 
of paths is created, a revised price P' can be calculated 
for the mortgage-backed security. The effective dura- 
tion index D of the mortgage-backed security is given 

by D = (P-P')/PA. s Similarly, by using two different 
parallel shocks to the term structure, the effective con- 
vexity index of the mortgage-backed security can be 
calculated. 

Risk indexes that measure price responses to fairly 
general non-parallel shifts in the term structure can be 
computed as described by Reitano ([19] and [20]). This 
is accomplished through shocking by amount A only 
the spot rate at the key maturity k, without shocking any 
of the spot rates at the other key maturities. Linearly 
interpolating the shocked term structure, transforming it 
back into a revised initial yield curve, and repricing the 
illustrative mortgage-backed security, gives a revised 
price P', . The partial duration or key rate duration D k is 
given by Dk = ( P -  P~) /PA.  The sum of the partial 
durations O k for all key maturities k is equal to D, the 
total duration index calculated above. A risk index that 
measures the sensitivity of the illustrative, mortgage- 
backed security's price to a small change in yield vola- 
tilities can also be calculated. This can be done for each 
key yield volatility o k separately to give partial volatil- 
ity durations or for a constant shock to all key volatili- 
ties simultaneously to give a total volatility duration. 
The same approach can be applied to the yield curve 
shock correlation coefficients Pjk to calculate other risk 
indexes if desired. 

Price and risk index calculations of the type described 
above have been utilized by Griffin [7] to develop an 
excess spread methodology for measuring profitability 
and its exposure to interest rate risk. In his paper, the 
new approach is applied to the case of an interest-sensi- 
tive annuity business. An interest rate generator of the 
type specified in Section 5.2, and adjusted to be arbi- 
trage free as described in Section 5.3, is central to imple- 
menting Griffin's methodology, and thus is an essential 
tool in asset-liability management. To determine a finan- 
cial institution's risk-neutral position and its current risk 
exposure relative to that risk-neutral position, the sto- 
chastic generator must be run in arbitrage-free mode by 
setting the drift parameters as described in Section 5.3. 
To analyze whether risky product-investment strategies 
should be adopted, the stochastic generator can then be 
run in real-word mode by adjusting the drift parameters 
to reflect management's views on expected interest rate 
behavior over time. Some institutions will be sufficiently 
risk averse that they will choose the risk-neutral position 
as their strategy. Or they may have insufficient capital to 
adopt prudently any strategy other than the risk-neutral 
position. Some institutions will have both the inclination 
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and the financial strength to adopt a risky strategy, and 
can use the generator in the real-world mode to analyze 
the relative attractiveness of different risky strategies. 

7. Key Conclusions 
This paper has shown that it is possible to gain a 

practical understanding of key concepts in financial 
economics without having to resort to a study of the 
mathematics of stochastic processes. Based on the 
assumptions that opportunities for riskless arbitrage do 
not exist and that the financial markets are complete, it 
was shown that a theory could be developed for pricing 
interest-rate-contingent cash-flow streams relative to 
the prices of all zero-coupon bonds, which are taken as 
exogenous inputs to the theory. The arbitrage-free 
prices are calculated in a straightforward manner by the 
expected-present-value algorithm, a technique that lies 
at the heart of actuarial science. 

From a theoretical viewpoint, a model of interest 
rates should be based on forward rates of interest, rather 
than on spot rates of interest or current-coupon yields, 
because pathologies such as negative or complex inter- 
est rates are then eliminated automatically. From a prac- 
tical viewpoint, however, model parameters are 
specified more naturally in terms of the statistical prop- 
erties (volatilities and correlations) of current-coupon 
yields which serve as the reference points for traders 
who make markets in fixed-income securities. More 
research is needed in order to build a single model that 
combines the advantages of each approach. This is 
likely to be the next significant practical evolution of 
interest rate path generators. 

Continuous-state models have important practical 
advantages over discrete-state models (and have no sig- 
nificant practical disadvantages): (i) realistic yield 
curve dynamics are accommodated more easily in a 
continuous model because a separate stochastic process 
equation is used for each key part of the term structure; 
(ii) many more states are sampled at the early epochs 
(and perhaps all the way out to the investor's horizon) 
in a continuous model, because paths of interest rates 
are the primary feature of the model; and (iii) moving 
between the risk-neutral world and the real world is 
accomplished more readily in a continuous model, 
because only the local drift of the process need be 
adjusted appropriately. 

The drift of a stochastic process is an important 
"dial" in an interest-rate model that is based on the pro- 

cess. The drift can be "tuned" to the risk-neutral word; 
so that application of the expected-present-value algo- 
rithm will result in arbitrage-flee prices for interest- 
rate-contingent cash flow streams. This setting of the 
dial enables an asset-liability manager to determine the 
risk-neutral position properly. The drift can also be 
"tuned" to the real world, so that subjective views 
regarding the behavior of interest rates can be accom- 
modated. This setting of the dial enables the asset-lia- 
bility manager to analyze properly the risk-reward 
tradeoffs inherent in adopting risky positions. 

The type of model of the yield curve presented in 
this paper can be used to price general streams of inter- 
est-rate-contingent cash flows and to compute indexes 
of interest rate risk, such as duration and convexity. The 
calculation of partial durations for the situation of non- 
parallel changes in the term structure is straightforward 
and natural under the model presented. Using the model 
involves generating a finite sample of interest rate paths 
on which to perform the price and risk index calcula- 
tions. To improve the efficiency of the price estimation, 
variance-reduction techniques must be used when 
selecting the sample of paths. More research is needed 
to determine which techniques work best in given situa- 
tions. 
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Discussion of Preceding Paper 

Michael E Davlin 
I commend Dr. Tilley for writing yet another fine 

paper for our Transactions on the important problem of 
interest rate risk. This excellent paper successfully 
achieves his stated goal of presenting the basic concepts 
of interest rate processes and option-pricing in such a 
manner that they are easily understood by the many 
actuaries who have chosen not to pursue the study of 
modern financial economics and stochastic processes. 
My own understanding of how a reasonable number of 
arbitrage-free interest rate paths can be constructed has 
been much improved by reading this article, and I am 
anxious to see the author make good his promise (in 
Section 5.3) of a forthcoming technical note extending 
the methods he outlines in this paper. I especially appre- 
ciate that he points out the room in his model for the 
important and, in my opinion, unavoidable issues of 
subjective expectations and subjective risk preferences. 
A well-written paper always raises questions and obser- 
vations in the mind of its reader, and this paper is no 
exception. A few of my thoughts are presented here for 
the author's consideration. 

As the author points out, a key contribution to actu- 
arial practice by financial economics is its emphasis on 
what the classical economists referred to as the law of 
one price: in a competitive market equilibrium there 
cannot exist more than one price for the same good. 
Financial economists now refer to a generalization of 
this law as the absence of riskless arbitrage. I am 
tempted to argue that many actuarial models, those 
based upon decision-theoretic principles, were (inter- 
nally) arbitrage-free before our recent encounters with 
the theories of modern finance in the following sense: 
identically contingent cash flows within these models 
were assigned identical prices. The (externally) arbi- 
trage-free condition imposed by the financial economist 
places additional consistency restrictions or bounds on 
what a modern actuary should consider to be a reason- 
able valuation of uncertain cash flows: model prices 
must match market prices. While I confess to finding 
this very appealing and intuitive, I also have difficulty 
adopting it wholeheartedly and without some caution. 
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Some aspects of my reservations may merely be dif- 
ferences in interpretation, with little or no practical con- 
sequences. For example, if I interpret a lognormal 
distribution of future interest rates as being reasonably 
representative of my uncertainty about the future course 
of interest rates, I have little difficulty adopting it for 
modeling purposes. I may even find myself estimating 
its parameters from historical prices if I do not have a 
compelling reason for using some other approach. If, on 
the other hand, adopting this model means that I have to 
accept the somewhat metaphysical baggage that often 
accompanies "scientific" economic modelingB 
assumed market equilibrium, process stationafity and 
ergodicity, and a generally positivist outlook on the 
woddBthen I become far less comfortable using and 
accepting these models. In contrast to the author's ear- 
lier writings on this subject, this paper admits that there 
may be validity to reflecting a decision-maker's subjec- 
tive outlook in modeling. Perhaps I read too much into 
his remarks. I would be very interested to know how the 
author interprets his model's interest rate process and 
whether he believes that the interpretation of a model is 
important. 

Another impediment to my embracing this approach 
to modeling interest rates is that it does not seem to 
explain interest rates in a way that gives me any guid- 
ance into how current developments might influence the 
future. In the same sense that Newton's law of gravity 
does not explain gravity but only describes its effects, 
the financial economist's models describe the pattern of 
interest rate movements but do not explain why they 
move or even why interest rates exist in the first place. 
As a consequence, these models are not of much use in 
answering questions that can be meaningful to an actu- 
ary. For example, how will future interest rates be 
affected if recurring proposals to limit the interest 
deduction on residential mortgages are adopted? How 
will rates and default premiums differ if deposit guaran- 
tee programs are left in place, in comparison to what 
they will be if these programs are modified? These 
types of issues evidently do not affect the decisions of a 
user of the author's model until, ex post facto, they have 
an observable effect upon interest rates, and only then 
through a revision in the historically derived estimates 
of the process parameters or drift terms. Insights on 
questions such as these frequently seem to be more 
available in traditional, even non-mathematical or 
"armchair" economics. This is ultimately not very intel- 
lectually satisfying, because I then feel as though my 

decision-making is based upon two irreconcilable world 
views. 

A more serious reservation concerns the assumption 
of equilibrium. The author cautions us not to "debate 
too-strenuously whether small arbitrages can e x i s t . . .  
because the assumptions are only approximations to 
reality" I would agree, but what should one do if he 
does not believe that one or more of the assumptions are 
not even remotely close to reality? 

What reasons do we have to believe that equilibrium 
is ever attained? Certainly, an unfettered market abhors 
a free lunch as much as nature abhors a vacuum. But 
does the fact that market participants have every incen- 
tive to discover and consume away any and all free 
lunches guarantee their success in doing so in the real 
world? At least since Keynes appeared on the scene, 
economists have been debating whether equilibrating or 
disequilibrating forces prevail in a free market. I am not 
aware that this issue has been resolved either way and 
am not optimistic that it ever will be. It seems to me that 
an absence of riskless arbitrage can exist regardless of 
whether a market is in equilibrium. If this is possible, 
then it raises the question of how much advantage there 
truly is to evaluating a strategy or position in the risk- 
neutral world implied by a constellation of prices in a 
market that may or may not be in equilibrium, as 
opposed to judging them with a subjectivist's outlook to 
the future. Clearly, serious mistakes can result from 
either approach. I would caution actuaries against con- 
cludlng that decisions made in the computationally con- 
venient risk-neutral world are by their nature more 
"objective" or less risky than those made in the real 
world using methods that reflect preferences and expec- 
tations. One of the most atlTactive aspects of the method 
presented in this paper is that it seems to allow for both 
outlooks. 

Once again, I am grateful to the author for this stim- 
ulating paper and look forward to reading his promised 
technical note. 

Merlin Jetton 

Other actuaries, as I do, should appreciate Dr. 
Tilley's efforts to increase their understanding of inter- 
est-rate modeling. He discusses many of the consider- 
ations and describes how to create arbitrage-free 
interest rate scenarios. 

My aim is similar, but in a quite different way. I believe 
we should be aware of the purpose of an arbitrage-free 
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option-pricing model. Some assumptions that underlie the 
arbitrage-free hypothesis are discussed. I discuss some 

• theoretical and practical aspects of the interest rate model 
described by Dr. Tilley. 

Such an option-pricing model is designed to calcu- 
late current market values. The current price (present 
value) of a financial instrument whose value depends on 
interest rates obviously must use interest rates to do the 
present valuing. In other words, such a model is a quite 
complex present-valuing algorithm. It generates interest 
rate scenarios, but the scenarios generated are subservi- 
ent to the primary goal of  calculating current market 
values. The scenarios are not intended to answer the 
question "What might the future be like?" but rather 
"What is the theoretically fair market value of this or 
that financial instrument or portfolio given today's yield 
curve?" Hence, the scenarios that an option-pricing 
model generates may not be appropriate given a differ- 
ent primary goal, for example, financial projections. 
(The model user needs to make this judgment.) The sce- 
narios that the option-pricing model does generate must 
be, in a certain sense, arbitrage-free. 

In a free market an entrepreneur who finds an arbi- 
trage opportunity will quickly exploit it and make an 
extraordinary profit. However, the market's supply and 
demand conditions will respond to the entrepreneur's 
actions, and the arbitrage opportunity will soon vanish. 
In the context of an option-pricing model, this implies 
that two financial instruments or portfolios that are 
nearly identical or close substitutes should have identi- 
cal, or nearly identical, prices. If there is a large enough 
price discrepancy between the two instruments per the 
model that it would present an arbitrage opportunity, 
then the model is not arbitrage-free. 

Dr. Tilley discusses interest rates in terms of coupon 
rates, spot or zero-coupon rates, and forward rates. 
They are all related. Given a yield curve of coupon 
rates, one can calculate a corresponding yield curve of 
spot rates, and then an array of implied forward rates. I 
wish to make two points about these different kinds of 
rates: 

1. Neither coupon rates nor spot rates make any claim 
about market interest rates as of some future date. 
They only portray rates in effect at the moment. On 
the other hand, forward rates calculated as described 
can be used to make an inference about market inter- 
est rates as of future dates. If you assume that the 
expected spot rate at some future date depends on a 

forward rate that exists today, then you are making 
an assumption. 

2. All these different kinds of rates can be used, in 
somewhat different ways, to calculate the present 
value of a cash flow. For ease of discussion, I refer to 
the three different ways as the yield-to-maturity 
method (YTMM), the spot rate method (SRM), and 
the forward rate method (FRM). The last method is 
quite different from the other two. Using the FRM 
starts with a spot rate as of now. This permits calcu- 
lating the present value of  a cash flow that will (or 
might) occur at the end of the period coterminous 
with the initial shortest-period spot rate. To calculate 
a present value of a cash flow that will (or might) 
occur beyond the end of such period, one links 
together inferred forward rates as of  one or more 
future dates. An assumption is made about future 
interest rates. 
I have read a limited amount of the literature on arbi- 

trage-flee interest rate models. But it seems to me, and 
it is quite clear in Dr. Tilley's model, that such a model 
has these features: 
1. The starting yield curve is taken as given, and one 

would presumably use the current real-world yield 
curve. 

2. The FRM is used to calculate all present values. 
Each linked forward rate covers an equal amount of 
time, and the forward rates are as of the future dates 
at which the model assumes interest rates can 
change. 

3. For the model to be arbitrage-free, the following 
conditions must hold. Using the FRM, calculate the 
present value of $1 payable at any future date n years 
from now along each path of interest rates the model 
projects, and then average such present values. Then 
calculate the present value of the same $1 using the 
n-year spot rate based on the starting yield curve. 
These two present values must be equal. It is pre- 
sumably this forced condition that calls for all the 
intimidating mathematics to which Dr. Tilley refers. 
Because of this third feature, the starting yield curve 

determines the average trend of future interest rates, at 
least of the shortest term interest rate, that the model 
will stochastically generate. If the starting yield curve is 
upward-sloping, the model will generate on average 
higher interest rates as it proceeds forward in time. If 
the starting yield curve is downward-sloping or flat, the 
model will generate rates that on average trend down- 
ward or fiat as it proceeds forward in time. If the 
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starting yield curve is humped, the model will generate 
on average higher interest rates, and then lower interest 
rates, as it proceeds forward in time. In other words, the 
model will "walk up" or "walk down" the starting (for- 
ward rate) yield curve. Of course, this affects the likeli- 
hood of options being exercised and the values the 
model places on such options. 

The arbitrage-free model almost exclusively uses the 
FRM as the present-valuing method. Is it the best 
method for present-valuing all cash flows? Is it better 
than the SRM for calculating the present value of a 
Treasury note or bond? Is it better than the YTMM for 
calculating the present value of a Treasury coupon-pay- 
ing note or bond? Let us consider an example. Suppose 
we want to value at time 0 a five-year zero-coupon 
Treasury note, with a face value of $100, whose current 
market price is $68.05. According to the arbitrage-free 
hypothesis, we must be able to calculate the present 
value, using the FRM, of that $100 along each of the 
future interest rate paths, average the results, and get 
$68.05. It strikes me as odd that the FRM calculates dif- 
ferent present values for the different paths when the 
present value of the $100 using the SRM for any path is 
$68.05. I guess it doesn't matter if the average is the 
only concern. However, the FRM would give an invalid 
measure of the variance of returns; the SRM would not. 

According to the arbitrage-free hypothesis, the 
expected return (the mean of an assumed probability 
distribution) for a given holding period should be equal 
for bonds of different maturities. For example, the 
expected total return for investing in a two-year U.S. 
Treasury for one year should equal the expected return 
of investing the same amount in a one-year Treasury, 
even when the yield-to-maturity for the former is 
greater. Suppose you were to use the model, but you do 
not force it to "walk up the forward yield curve"; rather, 
you set the drift parameter so that interest rates would 
on average not drift upward. That would be a violation 
of the arbitrage-free hypothesis. The two-year Treasury, 
vis-a-vis the one-year Treasury, presents an arbitrage 
opportunity. Its present value, averaged over all paths, 
exceeds the present value, averaged over all paths, of 
the one-year Treasury. Is this truly a riskless arbitrage 
opportunity or is it a quirk of using the FRM? Consider 
the following: 

1. As stated earlier, a necessary condition for a riskless 
arbitrage opportunity is that it can be exploited 
nearly instantaneously. The arbitrage opportunity 
that you want a model to avoid is inconsistent prices 

based on current interest rates, not current interest 
rates and inferred future interest rates as well. 

2. Amazingly, this apparent riskless arbitrage opportu- 
nity would vanish if the SRM were used. It does not 
depend on inferred interest rates. 

It was just suggested that the model will not replicate 
current market prices when not set in the arbitrage-free 
mode. This is generally true. Subsequent changes in 
market price implied by using a non-arbitrage-free drift 
parameter are captured in the present value at time 0. 
This is again the result of relying on the FRM in con- 
trast to the SRM. The SRM would not do this. 

ff one is going to use this model regularly, there are 
further implications to be aware of. Suppose the follow- 
ing. One day when the yield curve is quite upward- 
sloping, you use the model for a particular set of assets 
and liabilities. Then a few weeks later, you use the 
model again for essentially the same assets and liabili- 
ties. Not much has changed in the few weeks, except 
that the short end of the yield curve has shifted upward, 
making it less upward-sloping than before. The results 
from the second time will differ markedly from those 
the first time. This is not a concern if you are interested 
only in current market values. However, if you are con- 
cerned with other results, you will probably question 
the model and the assumptions you made. You recog- 
nize that some of the results produced using the model 
are fairly crude estimates anyway. You know very well 
that yield curves shift often, and in two weeks the curve 
may be back where it was when you ran the model the 
first time. Would you be satisfied with your results? 

I do not think that the starting yield curve has to dic- 
tate the average trend of future interest rates. Otherwise 
it is implicitly assumed that the forward rates derived 
from the starting yield curve do not contain any risk 
premiums. I find that assumption very unrealistic. How 
is it that spot rates contain risk premiums, but forward 
rates inferred from them do not? It would be more real- 
istic to assume that these forward rates do contain risk 
premiums and that these risk premiums generally 
decline and eventually vanish as each forward rate 
comes ever closer, with the passage of time, to becom- 
ing a spot rate. This contrary assumption, of course, 
introduces a judgmental element. The amounts of these 
risk premiums are not easily observable in the market- 
place, so different people will make different judgments 
about their size and thereby determine different average 
trends of future interest rates given the same starting 
yield curve. On the other hand, I do not believe we 
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should equate attaining objectivity of current prices-- 
by assuming zero risk premiums--with attaining objec- 
tivity of future prices (interest rates). 

The instruments the arbitrage-free model was devel- 
oped to price are "derivatives" of other instruments that 
are close substitutes. They are traded in active and effi- 
cient markets. The possibility of arbitrage opportunities 
being exploited, if they do arise, is more likely. The 
market value of such options is quite sensitive to shifts 
in the yield curve in the short run. The time to expira- 
tion of most such options is rather short--two years or 
less. On the other hand, the financial instruments an 
actuary deals with often contain options that do not 
have close substitutes or are not as efficiently priced. 
There is no active and efficient market. Also, such 
financial instruments often have much longer lives-- 
10 years or more. This suggests that maybe the model 
needs revision when applied to these somewhat differ- 
ent instruments. 

In an earlier paper 9, I said that bias, in some form or 
another, seems to be an unavoidable feature of stochas- 
tic interest rate generation models. I still believe that 
and that the arbitrage-free model is no exception. As 
Mr. Miller said in his discussion of that paper, "... our 
goal should be to know the implications of any bias and 
to avoid making bad decisions because of it." He also 
said that the "bias" in option-pricing models comes 
from assuming that a model that works well for one 
purpose will work well for all purposes. ~° Another bias 
in the option-pricing model is its devotion to the FRM 
for calculating present values when other proven meth- 
ods may be better. 

My final point is that I do not believe jointly using 
two interest rate models, one of which is arbitrage-free 
and the other not, would necessarily be incompatible. I 
will attempt to convey this notion with an imaginary 
conversation. It is between two actuaries, Gus and 
Norb. Gus is uncomfortable using an arbitrage-free 
model for a particular task at hand. Norb (his coworkers 
sometimes pronounce his name like "no arb") works 
with Gus and is enthralled with his arbitrage-free 
model. (He often says, "It's really elegant, a brilliant 
application of the pure expectations hypothesis") 

Gus: I don't believe using your option-pricing model 
is the right tool to use here. 

Norb: But if we don't use the arbitrage-free model, 
then we cannot accurately value the embedded options 
in the assets or the liabilities. 

Gus: Please, Norb, bear with me. Look, I have a 
solution to our dilemma. You walk along my interest 
rate paths with me. At every stop you can go off and do 
your thing. You take the yield curve we have at that 
time, make whatever assumptions you want to make 
about future interest rates and bring me back the appro- 
priate values for the embedded options. Then you'll 
again walk along my path with me to the next stop, 
where you'll repeat the process and I will again wait. It 
doesn't bother me that the assumptions you make to 
value the options don't match the assumptions I make 
about the paths we will walk together. 

Satisfied, Norb walks off to his supercomputer to 
gear it up for the task. 

Hal W. Pedersen ~ 

Dr. Tilley has written an interesting paper that 
clearly explains the fundamental ideas of term structure 
modeling. Furthermore, the paper is written carefully 
with due regard for the difficulties that an "actuarial 
layman" might face in an endeavor to understand and 
implement a "stochastic interest rate generator." I 
admire the paper for its successful exposition, with the 
use of but one formula, of such a technical subject. The 
objectives of the paper, as stated, make it inevitable that 
it must leave some issues by the wayside. I have some 
questions, the answers to which will assist me in better 
understanding not only the ideas of this paper but also 
the gap between theory and practice. At the same time, I 
hope that my remarks will provide an alternative point 
of view on some techniques of this paper. 

The discussion begins with a description of the mar- 
tingale approach to the modeling of the term structure 
of interest rates. This is followed by a specific example 
based on Brownian motion. Some questions concerning 
the model of this paper are then posed. 

Martingale Approach to Term Structure 
Modeling 

One standard approach to the modeling of the term 
structure of interest rates is known as the martingale 
approach. The work of Artzner and Delbaen [1] is a 
thorough, though demanding, reference on this topic. 
The book of Duffle [3, chapter 7] can also be consulted 
for this material. A different approach has recently been 
developed by Heath, Jarrow, and Morton [5]. As I agree 
with Dr. Tilley that continuous state space models are 
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preferable, the approach to modeling that I describe 
here is set up as such. Essentially, a model of the term 
structure may be prescribed by Equation (1). 

Basic to the analysis is a probability space (I2, g:, P) 
equipped with a filtration {3:,}. The filtration is an 
increasing family of sub t~-algebras of 3:; by increasing 
is meant :t s c ~Y, for s < t and the filtration is interpreted 
as the way in which the information in the market 
evolves or is revealed through time. The filtration is 
often referred to as the information structure. Also given 
is a spot rate process r, which is analogous to the one- 
period rate in Dr. Tilley's analysis. The spot rate process 
should be everywhere positive to avoid undesirable 
interest rate behavior such as negative interest rates. For 
0<_t~_T, let P(t,T) denote the price at time t of a default- 
free zero-coupon bond that pays 1 at time T. Note that 
P(T,T) = 1. We now fix a risk-neutral probability mea- 
sure, which is denoted by Q. Note that we axe choosing 
this measure and that consequently the procedure that 
we are following corresponds to approach (ii) that Dr. 
Tilley describes on page [294]. A model of the term 
structure of interest rates can now be prescribed by the 
formula 

P(t, r ) =  EQ[exp(-~r~du):Y,], (1) 

where EQ denotes expectation with respect to the proba- 
bility measure Q. If it is desired to reduce this formula 
to discrete time, then this translation can be achieved by 
replacing the integral with the appropriate summation. 
It follows from Equation (1), by the law of iterated 
expectations, that for O~s<T-t the bonds in the model 
will satisfy 

P(t,T) = EQIexp(-Ji+Sr~du)P(t+s,T) :Y,], (2) 

which can be interpreted as a consistency condition. In 
practical applications, the model prescribed by (1) will 
not be arbitrage-free. The problem is that the initial 
bond price function that results from tiffs equation, 
namely, P(0,T), usually will not agree with the bond 
prices currently in the market. One approach that can 
remedy this problem has been documented by Dybvig 
[4]. It should also be noted that Dybvig shows how to 
translate a closed formula for the value of an option in 
the original model to a closed formula for the value of 
the option in the adjusted model. 

The idea is to add a deterministic function, say h, to 
the spot rate process, which adjusts the model to fit the 
observed bond prices. As Dybvig [4, p. 6] notes, this 
perturbation technique is such that, " [t]he variance 
assumption [of the perturbed model] is as reasonable as 
it is in the chosen model" Suppose that the observed 
bond prices are given by the function f(T). Then the 
problem of fitting the observed bond prices is equiva- 
lent to choosing the function h such that for every T 

f ( T ) =  EQ[exp(-~(r~ +h~)du)]. (3) 

Since the function h is deterministic, Equation (3) can 
be expressed as 

f ( T ) =  exp(-~(h~du))EQIexp(-~ (r~du)) ] 

(4) 

= exp[-~(h~du)]P(O,T), 

where P(0,T) is the bond price function at time 0 that 
the original model generated and f(T) is the observed 
bond price function that we want the model to generate. 
Now it is relatively straightforward to solve for the 
function h. We can then employ the model given by 
Equation (1) with the spot rate process r + h in place of 
r to obtain an arbitrage-free model of the term structure. 

Let us now describe the option-pricing theory in a 
model such as (1). The term "contingent claim" is a gen- 
eral term that encompasses the term "option." A contin- 
gent claim payable at time t is any non-negative random 
variable that is measurable with respect to 3:,. For exam- 
ple, a European option with maturity t and strike price K 
that is written on a bond with maturity T, where T>t, is a 
contingent claim payable at time t with contingent payoff 
equal to the maximum of 0 and P(t, T)-K. Subject to the 
same assumptions that Dr. Tilley makes, namely, no arbi- 
trage and completeness, the price at time 0 of a contin- 
gent claim payable at time t, say, X, is characterized by 
the formula 

°[ price of X at time 0 = E exp - (rudu) X , (5) 

where the risk-neutral measure Q is the same Q that 
appears in the formula for the bond prices given in 
Equation (1). More generally, the price of the same 
claim at any time, s,s<t, is given by the equation 

o[ price o fXa t t imes  = E exp - rudu X I:Y s . (6) 
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Taken together, Equations (I) through (6) represent one 
standard approach to the construction of arbitrage-free 
term structure models and the pricing of interest-rate- 
contingent claims within these models. 

There is a fundamental difference between term 
structure modeling and the option-pricing within the 
model despite the fact that the expectation formulas in 
Equations (1) and (6) are similar. Equation (1) is the 
definition of the bond price processes• In other words, 
Equation (1) prescribes the bonds for the model. In con- 
trast, Equation (6) evaluates the price of the contingent 
claim. An important assumption behind Equation (6) is 
that the cash flows from the contingent claim can be 
replicated by an appropriate self-financing portfolio of 
the assets, and this allows us to price the contingent 
claim by our knowledge of the prices of the assets in the 
replicating portfolio. In the succinct terminology of Dr. 
Tilley, Equation (6) represents the "relative price" of 
the contingent claim. 

The pricing of contingent claims in the approach to 
term structure modeling that I have described here is 
really a two-step procedure. The first step is a prescrip- 
tion of the bond prices, which is made by fixing a risk- 
neutral probability measure and a spot rate process and 
then defining the bond prices through Equation (1). The 
second step is to employ these bond price processes and 
then to price the contingent claims through Equation 
(6). The recent paper [5] objects to this two-step proce- 
dure. There are sound theoretical reasons for their 
objection, and consequently there are good reasons to 
perhaps favor the approach that is taken in [5], as Dr. 
Tilley has alluded to at various points of his paper. Nev- 
ertheless, this two-step procedure is a time-honored 
approach in the finance literature and provides a bench- 
mark for understanding other models such as [5]. 

Last, Equation (5) underscores the important point 
on page [307] about the role of the one-period rates• For 
a concrete example to illustrate this point, consider a 
European option with maturity t and strike price K that 
is written on a bond with maturity T, where T>t. 
This contingent claim provides a cash flow equal to 
Max[0, P(t, T)-K], which is clearly determined by the 
bond price and not the spot rate, and by Equation (5) we 
also see the role of the spot rate in the valuation of this 
claim, because 

price of option = 

Ee[exp(-fo(rudu ) )Max[O, P( t, T) - K] ] • 

An Example Based on Brownian Motion 
Let us now mention a concrete case of the model 

[Equation (1)] that is known to be arbitrage-free and 
complete and thus meets Dr. Tilley's basic assumptions 
in Section 4.1. This specialization also will provide an 
example of what could come out of a path simulation of 
the model (1). To this end, let us now specialize the 
information structure to be a Brownian filtration and the 
spot rate process, r, to be defined by a stochastic differ- 
ential equation 

dr, = Ix,dt + o,dW,. (7) 

In Equation (7), W is to be understood as a vector of 
independent Brownian motion processes, W = (W ~t), 
W ~2) . . . . .  W ~)) , and c is understood to be an N-dimen- 
sional vector process• In the case of N = 1, we have a 
one-factor model and in the case of N > 1, we have a 
multifactor model. For a more general formulation of 
the multifactor case, one could consult Duffle [2, p. 
137]. In this setting, Artzner and Delbaen [1, section 
2.2] show that the bond price processes that result from 
Equation (1) are of the form 

dP(  t, T )  _ ~tr, dt + or, dW,  " (8) 
P(t, T) 

Please note that the differential in this equation is to be 
understood in t, for t < T. 

If we choose a number of bonds, indexed by maturity 
times, say, T I, T 2 . . . . .  T K, then using Equation (8) we can 
write 

dP(t,T,)l  - - 
P(t, T,) I Ix r' 

= dt 

de(t, Tk)[ .gr[ 
P(t, Tk) I 

+ 

IT I 2T I NT I 

IT k 2T t NT k 

dW~ ~ 

_aWe, ~_ 

(9) 
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which gives a matrix representation for the interrela- 
tionships between the rates of return on the various 
bonds. Equation (9) also exhibits the correlation struc- 
ture between these various bonds. 

For this model, the technique in Equation (3) is pre- 
cisely the addition of a time-dependent drift to the spot 
rate process. This can be seen immediately from the 
stochastic differential equation for the spot rate r. Thus, 
it appears that there may be some analogy between the 
adjustment procedure that Dr. Tilley employs and the 
type of adjustment procedure in Equation (3). 

Dr. Tilley states on page [290] that, "a single sto- 
chastic factor--the short-term rate of interest--drives 
the dynamic of the entire yield curve, resulting in per- 
fect correlation of yield movements across the curve" 
Some clarification of this point in the context of the 
general model that I have described may be appropriate. 
A model that is prescribed by Equation (1) is such that 
all the interest rate dynamics are driven through the spot 
rate process r. However, in the case in which there is 
more than one independent Brownian motion that is 
driving the spot rate, then we do not have perfect corre- 
lation of the yield curve movements. This fact is 
emphasized by Equation (9). 

In the case where r is driven by only one Brownian 
motion, I wonder if the following interpretation is what 
Dr. TiUey had in mind? It is convenient to drop the 
superscript and denote the Brownian motion by W. 
Equation (8) shows that the returns on all bonds are 
locally perfectly correlated because dPIP are linear 
functions of one another across all bonds. An applica- 
tion of It6's lemma to (8) shows that for s < t 

[ 1 r ]dt+~rdWt.  d[logP(t, T)] = ~t r - ~(O, )2 

A discretized version of this equation would take the 
form 

I-P(t+ 1, T)q 
°gL J - 

gr 1 r - ~(a,  )5] + a~, (W, . ,  - w , ) .  (lO) 

This equation could be recast in the notation of Section 
5.2, which is 

rk., = -~-_tlogP(t,k). 

In particular, Equation (10) shows that there is perfect 
correlation of yield movements across the curve. Indeed, 

the yield movements are perfectly correlated in the usual 
statistical sense because these movements are all linearly 
related to the same random variable, W,÷~-W,. In a fash- 
ion similar to Equation (10), a discretized version of the 
multifactor case could be written down, but the yield 
movements now will be imperfectly correlated. For a 
Brownian motion process, the random vector W,÷I-W , has 
a normal distribution. However, the actual distributional 
properties of a discretized version of this multifactor case 
will depend on the properties of the coefficients as well. 

Some Questions 
Can the model for generating interest rates described 

in this paper be viewed as a path-by-path simulation (or 
sampling) of a model that is prescribed by a formula such 
as Equation (1) and that is then adjusted to fit the 
observed bond price data? If this is the case, then one 
could feel at ease with this model because this model 
could be regarded as being embedded in a standard arbi- 
trage-free framework. Also, what exactly is the theory 
behind this model? Furthermore, if this simulation inter- 
pretation is correct, is it possible to make rigorous the 
convergence argument, based on equal probability sam- 
pies, that appears on page [294]? Also, I wonder whether 
it is possible to make rigorous the part of this assertion 
that says, "[t]hus, when all possible paths are repre- 
sented, solving for the risk-neutral drift of the stochastic 
process is equivalent to establishing the risk-neutral 
probabilities." If such an interpretation is not correct, 
then can Dr. Tilley offer a precise alternative interpreta- 
tion that would also explain what is meant by the remark 
on page [290], "... by way of calculations performed on 
paths sampled from a continuous model?" What is the 
relationship of the model that is prescribed in this paper 
to the class of models that are given by Equation (1)? 
There should be some relationship here because Dr. 
Tilley states on page [292] that "I now show how this 
description of the risk-neutral world can be used to con- 
struct an arbitrage-free model of interest rates." 

A simulation of the type of model described by 
Equation (1) under an adjustment procedure such as 
Equation (3) seems to be analogous to what is done in 
Section 4.2 and to what is suggested on page 102[sic]. 
The multifactor discretization will not be analogous to 
the most general model in Section 5.2, because the gen- 
eral model of this section prescribes all the rates simul- 
taneously and because the drift adjustment factor could 
be stochastic. However, the multifactor discretization 
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does seem to be analogous to Dr. Tilley's model in the 
case in which it is based only on the "key rates (page 
[296])" and the drift adjustment factor is deterministic. 
In brief, if we were to discretize this model and then 
simulate the discretized dynamics, it appears that we 
would be doing something like what Dr. Tilley is doing. 
Although this analogy with Dr. Tilley's generator is not 
perfect, it is suggestive. 

In some sense can we regard Dr. T~lley's model as a 
simulation, perhaps with a discretization, that is embed- 
ded within a master model of the term structure? If so, 
perhaps Dr. Tilley's model is best interpreted as a way 
of generating a consistent interest rate scenario, as a 
sampling from a full term structure model, and then 
applying the pricing techniques that the full model tells 
us are correct. Under such an interpretation, this 
approach would not be taken as a literal model of the 
term structure but rather as a way of using a master term 
structure model to price complicated cash flows in a 
computationally feasible way. 

Although I do not fully understand the ideas behind 
Dr. Tilley's model, the following description of the pro- 
cedure seems to be correct, and it summarizes a major 
point of confusion that I have. Indeed, once the interest 
rates are generated by the model, it appears that one 
might view the situation as follows. At time 0 one does 
not know which path one will be on, and so in some 
sense the yield rates are stochastic at this time. How- 
ever, as soon as you move ahead to time 1, the. yield 
rates are then deterministic because you will be on the 
same path of yield curves for the rest of the time. Figure 
1 illustrates the point. Loosely speaking, once you take 
the first step to the state of the word  at time 1, then you 
are in a deterministic world. This would then seem to 
lead to arbitrage because, for instance, the forward rates 
imply definite restrictions if the next yield curves are 
known with certainty. 

"[T]hus, constraining the process to be arbitrage-free 
is tantamount to setting its time dependent drift so that 
all zero-coupon bonds are priced at values equal to 
those derived from the exogenously specific initial yield 
curve" (page [293]). Is this really an appropriate notion 
of an arbitrage-free model? Does the more fundamental 
notion of such a model being arbitrage-free involve 
being free of arbitrages that arise by setting up certain 
riskless hedges through the trading of bonds? Since 
there is no trading of bonds possible in this path-based 
model, it seems unclear how the usual notion of arbi- 
trage-free would be understood. 

FIGURE 1 

time 
z e r o  
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yield curves at time one 

Another question is how one is to value contingent 
claims (options) that have early-exercise provisions. 
The following two quotations from page [290] seem to 
suggest that Dr. Tilley is not advocating the usual arbi- 
trage-based methods for valuing contingent claims with 
early-exercise provisions, "[w]ithout a lattice (whether 
connected or not), backward induction is not possible. 
From a purely mathematical viewpoint, it is difficult to 
construct optimal exercise strategies for many option 
problems by doing calculations on interest rate paths 
sampled from a continuous model," and "It]he behavior 
of these people, as to their strategies for rational (if not 
mathematically optimal) exercise of the options they 
hold, can be modeled sufficiently accurately that the 
options are valued properly by way of calculations per- 
formed on paths sampled from a continuous model"  

My first point of confusion is what is meant by the 
word "difficult." Backward induction is the only 
method that I know of for constructing the optimal 
exercise strategies that are necessary to evaluate contin- 
gent claims that have early-exercise provisions. 
Because the model in this paper does not permit back- 
ward induction, I do not know what technique Dr. Tilley 
has in mind. 

I also point out that it is not possible to project the 
optimal cash flows from such a contingent claim on a 
path-by-path basis. All possible future events must be 
taken into account to make this optimal projection. In 
other words, at each epoch all the future possibilities 
that may develop from the current state of the world 
must be known, but such is not the case for this model 
because there is no evolution structure available. For 
example, even though any particular contingent claim 
that has an early-exercise provision may be in the 
money, it does not mean that the claim holder will want 
to exercise it, although he may wish to do so in some 
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situations. (A good example of this dual phenomenon is 
the American put option.) The exercise decision will 
depend on the future states of the world (hence future 
values of the claim) in relation to the current state of the 
world. Hence, it seems impossible to value certain con- 
tingent claims by this model in accordance with the 
usual arbitrage-based techniques. In fact, it seems this 
model can only properly price claims whose cash flows 
at each time along a path are determined by the yield 
curves along that path only. (By properly, I mean a price 
that is consistent with the benchmark of arbitrage-based 
pricing.) A particular subclass of such claims would be 
those claims whose cash flows at each time are deter- 
mined by the past history and the current yield curve 
only. For instance, the model in the paper would price 
interest rate caps and floors nicely. Is it possible to 
quantify the bias in pricing contingent claims that have 
early-exercise provisions that results from using the 
approach that Dr. Tilley is suggesting as compared to 
the arbitrage-based optimal exercise procedure? 

I am also unclear on how to reconcile this second 
quotation from page [290] with the following quotation, 
which is taken from [2] in the context of a particular 
example but which is representative of a general princi- 
ple in pricing by arbitrage-based methods, "[i]t still 
might seem that we are depending on rational behavior 
by the person who bought the call we sold. If instead he 
behaves foolishly and exercises at the wrong time, 
could he make things worse for us as well as for him- 
self?. Fortunately, the answer is no. Mistakes on his part 
can only mean greater profits for us." 

Note that for the class of models that I have 
described, the optimal exercise strategies can be com- 
puted because we can project the optimal cash flows 
since there is an information structure (filtration) 
present at each state of the world. Thus, in theory, con- 
tingent claims that have early-exercise provisions can 
be priced by arbitrage-based methods. In practice, these 
arbitrage-based prices have to be computed numeri- 
cally, and this is a most troublesome task. 

I thank Dr. TiUey for an insightful paper that has fur- 
thered my understanding of some of the difficult issues 
involved in the practical application of term structure 
theory. I also appreciate the lesson in the art of commu- 
nicating difficult concepts without relying on formulas. 
However, it would be most interesting to see some pic- 
tures of the yield curves, with the accompanying 
parameters, that are generated by the model of Section 
5.2. This would be helpful in appreciating the wide 

range of yield curve dynamics that the model is capable 
of producing. 

References 
1. ARTZNER, P., AND DELBAEN, F. "Term Structure of 

Interest Rates: The Martingale Approach" Advances 
in Applied Mathematics 10 (1989): 95 - 129. 

2. COX, J., ROSS, S., AND RUBINSTEIN, M. "Option Pric- 
ing: A Simplified Approach" Journal of Financial 
Economics 7 (1979): 229-63. 

3. DUFFLE, J.D. Dynamic Asset Pricing Theory. Prince- 
ton: Princeton University Press, 1992. 

4. DYBVlG, P. "Bond and B.ond Option Pricing Based on 
the Current Term Structure," Working paper, Wash- 
ington University, Olin School of Business, 1988. 

5. HEATH, D., JARROW, R., AND MORTON, A. "Bond 
Pricing and the Term Structure of Interest Rates: A 
New Methodology for Contingent Claims Valuation" 
Econometrica 60 (1992): 77-105. 

Author's Review of Discussions 

James A. Tilley 
I thank Mr. Davlin, Mr. Jetton, and Mr. Pedersen for 

their discussions of my paper. I find it most convenient 
to respond to their questions by author. 

Mr. Davlin's Discussion 
I believe that an interest rate model should capture 

how the world actually works. One should do the best job 
possible to discover the real world's interest rate dynam- 
ics. If one observes fat-tailed distributions, tendencies to 
mean reversion, stochastic rather than deterministic vola- 
tility, liquidity premiums, and so on, one should build 
them into the model. Subjective views of the trend of 
interest rates and the shape of the yield curve also should 
be incorporated into the model. Of course, any model 
will end up being only an approximation to reality, but it 
should be the best one can build. The most important use 
of such a model is to evaluate risk/reward tradeoffs char- 
acteristic of all portfolio decisions. 

Once such a model is available, it also can be used to 
calculate consistent relative prices among various 
instruments whose cash flows either are fixed or depend 
only on interest rates. For this purpose, and probably 
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for this purpose only, the drifts of the interest rate pro- 
cesses must be adjusted so that the desired relative 
prices can be derived properly by way of straightfor- 
ward expected-value computations. Once one has deter- 
mined the fair market prices for all instruments, one 
should return to the real-world model (the one with 
unadjusted drifts) to evaluate the relative attractiveness 
of various portfolio strategies. 

I share Mr. Davlin's yearning for models that 
"explain" sources of interest rate and spread changes. 
Such models are the subject of econometrics, a disci- 
pline in which mathematical economists attempt to cod- 
ify the fuzzy ideas of armchair economists. In general, 
the results of such efforts have been rather unsatisfying. 
Even a satisfactory econometrics model for interest 
rates would be probabilistic, not deterministic. The pur- 
pose of my paper was not to take on the challenge of 
building a better econometrics model. But I would like 
to say a little more about the question of the "causes" of 
the stochastic dynamics of interest rates. 

Consider the case of the Brownian motion of a parti- 
cle in a liquid. One knows that the particle moves 
within the liquid because it is buffeted by molecules of 
the liquid--in other words, one understands the 
"causes" of the particle's motion. One even understands 
the physics of the interaction among molecules of the 
liquid and their resulting motion. Nevertheless, the best 
description, indeed, the only useful description, of the 
dynamics of the particle is a random movement gov- 
erned by a particular stochastic differential equation. In 
the case of the particle, one can "derive" the stochastic 
equation of motion, but in the case of interest rates, one 
has to "observe" behavior in the real world and then 
select a satisfactory equation of motion empirically. I 
believe it is the "empirical" approach to which Mr. Dav- 
lin objects on philosophical grounds. Yet, actuaries 
often utilize empirical approaches in their traditional 
areas of work they observe the age dependency of the 
forces of mortality and morbidity, and they observe the 
probability distributions of losses that arise from the 
violence of the earth, air, water, and fire. 

Mr. Davlin poses good questions about market equi- 
librium, questions that many good minds will ponder for 
years to come. Related to his comments in this area, let 
me stress once again that I believe that decisions should 
be made in setting of the real world using methods that 
reflect subjective preferences and expectations---I do not 
believe that there is necessarily any advantage to evaluat- 
ing a strategy in the setting of the risk-neutral world. 

However, I do know that fair market prices can be calcu- 
lated easily in the setting of risk-neutral world. 

Mr. Jetton's Discussion 

My comments on Mr. Davlin's discussion indicate 
that I do not agree with what I believe to be Mr. Jetton's 
view that "[interest rate] scenarios are not intended to 
answer the question 'What might the future be like?'." 

I also disagree with the thrust of Mr. Jetton's state- 
ment that "neither coupon rates nor spot rates make any 
claim about market rates as of some future date ... [but] 
forward rates ... can be used to make an inference about 
market interest rates as of future dates." This ostensibly 
innocuous statement is the opening salvo of his view 
that the use of forward rates to perform discounting cal- 
culations involves assumptions (implicit or otherwise) 
that are not needed by or are not shared by other dis- 
counting methods. I find many of Mr. Jetton's state- 
ments about calculating present values using current- 
coupon yields (his label is YTMM), spot rates (his label 
is SRM), and forward rates (his label is FRM) to be con- 
fusing, misleading, or inaccurate. I offer a detailed cri- 
tique of a few of Mr. Jetton's examples below. 

As indicated at the end of Section 2 of my paper, the 
sets of current-coupon yields, spot rates, and forward 
rates contain equivalent information. Any one set of 
yields or rates is sufficient to derive the other two sets. 
Depending on the situation, there may be a natural set 
to use, but all carry identical information. These are 
mathematical statements of fact, not opinions. 

When cash flows are non-interest-sensitive, it makes 
absolutely no difference whether one uses yields to 
maturity, spot rates, or forward rates to calculate present 
values, provided that the calculations are performed 
properly and accurately. For this situation, generating 
interest rate scenarios is unnecessary. Computing the 
present value of a non-interest-sensitive cash-flow 
stream by using the relevant spot rates is not only cor- 
rect, but also by far the simplest method. However, 
when cash flows are interest-sensitive, the only practi- 
cal choice for discounting the cash-flow stream to a 
proper present value is the "expected present value" 
method, invented by others and described by me in the 
paper. For this situation, the SRM as described by Mr. 
Jetton will give the wrong answer. Whether one con- 
structs the random generator for interest rates based on 
current-coupon yields, spot rates, or forward rates is 
partly a matter of taste. Thus, it is not proper to single 
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out forward rates and claim that interest-rate-contingent 
cash flows must be discounted by something called an 
FRM. Instead, it is proper to state that interest-rate- 
contingent cash flows must be discounted by the 
expected-present-value method, and that the paths of 
future interest rates can be sampled from stochastic pro- 
cesses relating to current-coupon yields or spot rates or 
forward rates. Specifying the stochastic processes in 
terms of forward rates makes it easy to constrain the 
forward rates from ever becoming negative, a statement 
that does not apply when the stochastic processes are 
specified in terms of either spot rates or current-coupon 
rates. 

After reading Mr. Jetton's comments, I think that it is 
important to stress a point about the expected-present- 
value method that was made in my paper and that was 
reinforced by a comment made by Mr. Pedersen in his 
discussion. The one-period rates of  interest play a spe- 
cial role in the expected-present-value algorithm. Only 
the one-period rates are used to discount cash flows 
along a path. Yields of bonds with maturities greater 
than one period affect the arbitrage-free price of a 
stream of interest-rate-contingent cash flows only to the 
extent that the amounts of the cash flows depend on 
those yields. Note that a one-period rate is a current- 
coupon yield, a spot rate, and a forward rate. Certainly, 
it seems artificial to claim that the expected-present- 
value algorithm is a "forward rate method" (FRM), as 
Mr. Jetton states. 

In giving an example of pricing a five-year $100 face 
amount zero-coupon bond, Mr. Jetton states that the 
present value is $68.05 for any path if one uses the 
SRM, whereas using the FRM leads to different present 
values for each path, these different values only averag- 
ing to $68.05 over the full set of arbitrage-free paths. 
He then states "I guess it does not matter if the average 
is the only concern. However, the FRM would give an 
invalid measure of the variance of returns; the SRM 
would not" For Mr. Jetton's example, the zero-coupon 
bond has a single fixed cash flow, not interest-sensitive 
cash flows. Thus, as I stated above, using the five-year 
spot rate to discount the bond's single cash flow is the 
most straightforward way to obtain its price. Also, as I 
stated above, one does not need to generate an arbi- 
trage-free set of interest rate paths to price this bond, 
but if one chooses to generate such a set of paths, the 
expected-present-value method will lead to the correct 
price. 

Where Mr. Jetton errs is in comparing the returns, 
and hence the variances of the returns, for two different 
investment strategies. The first strategy is to buy the 
five-year zero coupon bond at time 0 and to hold it for 
five years until its maturity--the terminal wealth is 
$100, regardless of the actual path of interest rates fol- 
lowed. The second strategy is to invest $68.05 at time 0 
in a one-period bond (for example, a three-month Trea- 
sury bill if the period between epochs is one quarter of a 
year), and to keep rolling that investment at its maturity 
into successive one-period bonds until the five-year 
horizon is reached. For this second strategy, the termi- 
nal wealth depends on the path that interest rates follow. 
For some paths, the terminal wealth is greater than 
$100, while for others is it less than $100. In fact, the 
terminal wealth generally does not average $100, and 
definitely does not average $100 if the full set of paths is 
arbitrage-free, a very surprising, but correct, result. The 
variances of the returns are different for the two strate- 
gies-zero for the first strategy and positive for the sec- 
ond strategy--because the strategies are different! 

Mr. Jetton's statement that "the expected return for a 
given holding period should be equal for bonds of dif- 
ferent maturities" is not generally true. The expecta- 
tions that must be equal relate to prices (that is, present 
values), not to returns (that is, future values). Only 
locally, that is, over a one-period horizon, must 
expected returns for bonds of different maturities be 
equal. This is a very commonly misunderstood point 
that is almost always discussed too casually in the liter- 
ature on interest rate processes. 

Mr. Jetton offers a second example to highlight the 
advantages of what he has called the SRM and the diffi- 
culties encountered by what he has called the FRM. The 
example involves the returns from two different invest- 
ment strategies: (1) buy a one-year Treasury and hold it 
for one year, and (2) buy a two-year Treasury and hold 
it for one year. Mr. Jetton properly describes a real- 
world situation in which the drifts of the interest rate 
processes are such that the second strategy has a greater 
expected return than the first strategy. He then states: 
"The two-year Treasury, vis-a-vis the one-year Trea- 
sury, presents an arbitrage opportunity . . . .  Is this truly a 
riskless arbitrage opportunity or is it a quirk of using 
the FRM? ... Amazingly, this apparent riskless arbi- 
trage opportunity would vanish if the SRM were used. 
It does not depend on inferred future interest rates." 

The situation that Mr. Jetton poses is realistic. Most 
investors consider it to exist every time the yield curve 

VII. An Actuarial Layman's Guide to Building Stochastic Interest Rate Generators 313 



is sufficiently positively sloped. However, his analysis 
is flawed in several respects. First, the situation has 
nothing whatsoever to do with SRMs or FRMs--how 
Mr. Jetton makes this connection I do not understand. 
Second, there is nothing wrong with a situation in 
which the two strategies have different expected 
returns. Third, the opportunity available to the investor 
in this example is not a riskless arbitrage. By shorting 
the one-year bond and using the proceeds to purchase 
the two-year bond, one will lose money if interest rates 
rise a lot by the end of the year--there is nothing risk- 
less about the arbitrage! 

In my opinion, other misleading, if not incorrect, 
statements made by Mr. Jetton in connection with 
present-value calculations are: "This is again the result 
of relying on the FRM in contrast to the SRM. The 
SRM would not do this" (page [305]) and "Another bias 
in the option-pricing model is its devotion to the FRM 
for calculating present values when other proven meth- 
ods may be better" (page [306]). 

I agree with Mr. Jetton in that "I don't believe it has 
to be the case that the starting yield curve dictates the 
average trend of future interest rates." Portfolio and 
business decisions should be based on a real-word cali- 
bration, of the interest rate model, in which the drift of 
interest rates is likely to be somewhat, if not fully, inde- 
pendent of the starting yield curve. However, for pur- 
poses of calculating the prices of interest-rate- 
contingent cash-flow streams in a straightforward fash- 
ion that produces answers consistent with the observed 
prices of Treasury bonds, one must adjust the drift of 
interest rates based on the starting yield curve. 

Mr. Jetton's character Gus essentially has it right: 
Norb is allowed to "do his thing" by using an arbitrage- 
free model to value embedded options. Gus then uses 
this information at each point along his own real-world 
paths of interest rates to make whatever business deci- 
sions he thinks are appropriate. By the way, Norb does 
not actually need a supercomputer--a powerful PC or a 
good workstation will suffice. 

Mr. Pedersen's Discussion 

The adjustment procedure used by Mr. Pedersen in 
his example is the type that I have described in my 
paper. His clarification of what is meant by a multifac- 
tor process is very helpful. The perfect local correlation 
of yield curve movements across the yield curve in the 

case of a single Brownian motion is exactly what I had 
in mind. 

The interest rate generator that is described in my 
paper can be viewed as a path-by-path simulation of a 
model described by Mr. Pedersen's Equation (1) and 
that is then adjusted to fit the observed bond price data. 
Apart from the discretization of time, I prefer to think 
of the models I have described as being exactly those 
described by Mr. Pedersen. The selection of a finite 
sample of paths from the model is merely a computa- 
tional device to price contingent claims. Different sam- 
ples of P paths each will lead to different prices for a 
given contingent claim. The probability distribution of 
these sample estimates has a variance that tends to zero 
as P tends to infinity. The truth of the various assertions 
in my paper to which Mr. Pedersen refers follows from 
the sampling interpretation. 

I believe that Mr. Pedersen has misunderstood one 
aspect of the techniques described in my paper, proba- 
bly because I adhered too closely to my constraint of a 
purely verbal description of the model and its related 
computational algorithms. The method for sampling 
paths of interest rates does not make the model stochas- 
tic at epoch 0 and deterministic at any or all future 
epochs. Nor does the sampling method render trading 
of bonds impossible in the model. At any time on any 
path, one has available by means of the simulation algo- 
rithm the full yieM curve, not just the one-period rate of 
interest. Thus, one knows the prices of noncallable 
bonds of all maturities and one can trade a portfolio of 
bonds and establish a riskless hedge if desired. 

Paths of interest rates from a given model can be 
simulated in many ways. A common approach is multi- 
nomial sampling in which N paths are generated from 
epoch 0 to epoch 1; for each of the N points at epoch 1, 
N paths are generated from epoch 1 to epoch 2; for each 
of the N 2 points at epoch 2, N paths are generated from 
epoch 2 to epoch 3; for each of the N 3 points at epoch 3, 
N paths are generated from epoch 3 to epoch 4; and so 
on. The structure of such a set of paths is a multinomial 
"tree" in which the number of paths grows exponen- 
tially as the number of time periods, making practical 
computations infeasible. It is better to sample paths as 
depicted in Figure 1 of Mr. Pedersen's discussion (with 
path crossings permitted, of course), but such sampling 
does not make the model deterministic beyond epoch 0. 
The model is stochastic beyond epoch 0 because a ran- 
dom number (or as many random numbers as there are 
stochastic factors) is needed at each epoch on each path 
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to extend the path to the next epoch. Because the full 
yield curve is simulated in an arbitrage-free manner at 
each epoch on each path, one does not need a "tree" 
emanating from each point to calculate the prices of all 
bonds at each point. This is the crucial concept underly- 
ing the practical implementation of the computational 
techniques that I have described. 

Although I have not provided the mathematical 
details to make it easy, one can implement the algo- 
rithm described in Section 5.3 of my paper to construct 
a multifactor model of the term structure that satisfies 
the Heath-Jarrow-Morton (HJM) arbitrage-free condi- 
tions to which Mr. Pedersen refers in his discussion. 
[The article by Miller that is cited in my paper describes 
the approach. However, Miller's algorithm is based on 
spot rates, not forward rates, and develops negative for- 
ward rates with positive probability. Basing the pro- 
cesses explicitly on forward rates introduces some 
computational subtleties.] The resulting model can thus 
be characterized as an HJM model. Interestingly to Mr. 
Pedersen, I suspect, the model explicitly utilizes the 
two-step procedure described in his discussion. I intend 
to provide the technical details in a future communica- 
tion, as I stated in Section 5.3. 

Mr. Pedersen's question about what is an appropriate 
notion of an arbitrage-free model was also raised by Dr. 
Shiu during his reading of my paper prior to its being 
submitted for publication in the TSA. Obviously, I need 
to explain this important point more clearly and will try 
to do so here. The essential ideas are contained in Sec- 
tion 5.3 of my paper. To state the arbitrage-free condi- 
tion as crisply as possible, a few definitions are helpful. 
An arbitrary epoch on an arbitrary interest rate path is 
chosen and referred to as the "initial point?' Since full 
yield curves are simulated period by period under the 
model, there is no loss of generality in considering the 
yield curve obtaining at the initial point to be g ivenn 
thus, it is referred to as "exogenously specified?' The 
prices of all default-free zero-coupon bonds can be 
derived from the exogenously specified initial yield 
curve and are also considered to be "exogenously speci- 
fied." Arbitrage-free adjustments of the drifts of the 
interest rate processes are defined by reference to these 
zero-coupon bonds. 

• Arbitrage-Free Adjustments. The drift terms of the 
stochastic processes that govern the evolution of the 
yield curve from the initial point to the epoch one 
period ahead are adjusted at the initial point until the 
present value at the initial point of the expected one- 

period-ahead price of each zero-coupon bond is 
equal to its exogenously specified price at the initial 
point. 

• Arbitrage-Free Condition. The stochastic interest 
rate model is said to be arbitrage-free when the arbi- 
trage-free adjustments as defined above have been 
made at every epoch on every interest rate path. 
Mr. Pedersen raises excellent points about determin- 

ing the optimal exercise of options. First, I want to point 
out that the "evolution structure [of interest rates]" is 
potentially available at each epoch on each path--it is 
only singly sampled on each path after epoch 0 under 
my method for constructing paths. Second, I have writ- 
ten a paper that has been accepted for publication in 
Volume XLV of the TSA in which I demonstrate how to 
implement backward induction on a set of paths of the 
type depicted in Figure 1 of Mr. Pedersen's discussion. 
A specific numerical example involving an American 
put option is given in that paper. The valuation method 
is surprisingly accurate, even for relatively small sam- 
ple sizes. 

Finally, I encourage all readers of my paper to exper- 
iment with implementing the model and to plot the evo- 
lution of yield curves. I have implemented a four-factor 
HJM model that produces yield curves with the various 
shapes that are observed in the real world. 

End Notes 
1. A natural set of fundamental assets is all Arrow- 

Debreu securities. An Arrow-Debreu security pays 
$1 if a specified future state of the world occurs, 
and nothing otherwise. There are as many Arrow- 
Debreu securities as there are future states of the 
word. In a binomial model of interest rates, the two 
fundamental Arrow-Debreu securities defined at 
each two-pronged fork in the lattice are: an elemen- 
tary put option that pays $1 if the up state occurs 
and $0 if the down state occurs, and an elementary 
call option that pays $1 if the down state occurs and 
$0 if the up state occurs. The role of the elementary 
options in valuing interest-rate-contingent cash 
flows is described in a paper by Jacob, Lord, and 
Tilley [15]. 

2. There are many ways that an expected present 
value could be computed for a stream of interest- 
rate-contingent cash flows. The intuitively appeal- 
ing method described in the text above is the only 
one that is valid generally, but the proof is beyond 
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the scope of this paper. The essence of the proof for 
the case of binomial lattices (from which one can 
generalize to other situations) appears in Jacob, 
Lord, and Tilley [15] and utilizes the elementary 
put and call options described in footnote 1. 
Finally, I offer a helpful calculation reminder: On 
any path, be sure to use the one-period interest rate 
at epoch t -  1 to discount cash flow occuring at 
epoch t back to a present value at epoch t - 1. 

3. The form of adjustment should be appropriate to 
the stochastic process that is modeled. A multipli- 
cative adjustment of the type described in this sec- 
tion is valid for the lognormal process. 

4. No distinction in notation is made in this paper 
between random variables and particular values 
they may assume, because the relevant interpreta- 
tion is always clear. 

5. Trying to cope with these difficulties, which arise 
more frequently when high yield volatilities, low 
mean-reversion strengths, or long-maturity bonds 
are used, quickly leads a model builder to the view 
that stochastic generators based on spot or forward 
rates would be highly preferred to those based on 
current-coupon yields. 

6. For example, let Y be a random variable equal to the 
sum of n independent random variables Xi, i=1 . . . . .  
n, each of which has the same probability density 
function. Assume that the probability density func- 

tion of X, has zero mean and is symmetric. Then, 
regardless of sample size, the method of antithetic 
variates will calculate the median and all odd 
moments of Y exactly. 

7. The method used by Balzer [1] on yield data for 
Australian government bonds will likely estimate 
the mean reversion level and strength parameters 
much more accurately than is possible by linear 
regression. 

8. In using the equation given for the duration index 
exactly in the form written (that is, without some 
(1 +/)-type of factor multiplying the right-hand 
side of the equation), one should calculate the 
"shocked" price P' based on a parallel shift A in the 
term structure, not the yield curve, and one should 
express the spot rates defining the term structure as 
forces of interest. Otherwise, the duration index so 
calculated will not agree precisely with the conven- 
tional Macaulay-Redington definition. 

9. Jetton, Merlin. "Interest Rate Scenarios," TSA XL, 
Part I (1989): 423-76. 

10. Ibid., 460. 

11. Mr. Pedersen, not a member of the Society, is a 
recipient of a Society of Actuaries Ph.D. Grant for 
his doctoral studies at Washington University, St. 
Louis. 
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